Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg

Browsing Posts in Open Science

I am happy to announce that our Viewpoint article on strategies for improving sequence databases has now been published in the journal Proteomics. The paper (1) defines some central problems hampering genomic, proteomic and metagenomic analyses and suggests five strategies to improve the situation:

  1. Clearly separate experimentally verified and unverified sequence entries
  2. Enable a system for tracing the origins of annotations
  3. Separate entries with high-quality, informative annotation from less useful ones
  4. Integrate automated quality-control software whenever such tools exist
  5. Facilitate post-submission editing of annotations and metadata associated with sequences

The paper is not long, so I encourage you to read it in its entirety. We believe that spreading this knowledge and pushing solutions to problems related to poor annotation metadata is vastly important in this era of big data. Although we specifically address protein-coding genes in this paper, the same logic also applies to other types of biological sequences. In this way the paper is related to my previous work with Henrik Nilsson on improving annotation data for taxonomic barcoding genes (2-4). This paper was one of the main end-results of the GoBiG network, and the backstory on the paper follows below the references…

References

  1. Bengtsson-Palme J, Boulund F, Edström R, Feizi A, Johnning A, Jonsson VA, Karlsson FH, Pal C, Pereira MB, Rehammar A, Sánchez J, Sanli K, Thorell K: Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics, Early view (2016). doi: 10.1002/pmic.201600034
  2. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TT, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Senés C, Smith ME, Suija A, Taylor DE, Telleria MT, Weiß M, Larsson KH: Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology, 22, 21, 5271–5277 (2013). doi: 10.1111/mec.12481
  3. Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE, Bahnmann B, Bahram M, Bengtsson-Palme J, Berlin A, Branco S, Chomnunti P, Dissanayake A, Drenkhan R, Friberg H, Frøslev TG, Halwachs B, Hartmann M, Henricot B, Jayawardena R, Jumpponen A, Kauserud H, Koskela S, Kulik T, Liimatainen K, Lindahl B, Lindner D, Liu J-K, Maharachchikumbura S, Manamgoda D, Martinsson S, Neves MA, Niskanen T, Nylinder S, Pereira OL, Pinho DB, Porter TM, Queloz V, Riit T, Sanchez-García M, de Sousa F, Stefaczyk E, Tadych M, Takamatsu S, Tian Q, Udayanga D, Unterseher M, Wang Z, Wikee S, Yan J, Larsson E, Larsson K-H, Kõljalg U, Abarenkov K: Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 67, 1, 11–19 (2014). doi: 10.1007/s13225-014-0291-8
  4. Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM, Bengtsson-Palme J, Walker D, de Sousa F, Gamper HA, Larsson E, Larsson K-H, Kõljalg U, Edgar R, Abarenkov K: A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environments, 30, 2, 145–150 (2015). doi: 10.1264/jsme2.ME14121

Backstory
In June 2013, the Gothenburg Bioinformatics Group for junior scientists (GoBiG) arranged a workshop with two themes: “Parallelized quantification of genes in large metagenomic datasets” and “Assigning functional predictions to NGS data”. The following discussion on how to database quality influenced results and what could be done to improve the situation was rather intense, and several good ideas were thrown around. I took notes from the meeting, and in the evening I put them down during a warm summer night at the balcony. In fact, the notes were good enough to be an early embryo for a manuscript. So I sent it to some of the most active GoBiG members (Kaisa Thorell and Fredrik Boulund), who were positive regarding the idea to turn it into a manuscript. I wrote it together more properly and we decided that everyone who contributed with ideas at the meeting would be invited to become co-authors. We submitted the manuscript in early 2014, only to see it (rather brutally) rejected. At that point most of us were sucked up in their own projects, so nothing happened to this manuscript for over a year. Then we decided to give it another go, updated the manuscript heavily and changed a few parts to better reflect the current database situation (at this point, e.g., UniProt had already started implementing some of our suggested ideas). Still, some of the proposed strategies were more radical in 2013 than they would be now, more than three years later. We asked the Proteomics editors if they would be interested in the manuscript, and they turned out to be very positive. Indeed, the entire experience with the editors at Proteomics has been very pleasant. I am very thankful to the GoBiG team for this time, and to the editors at Proteomics who saw the value of this manuscript.

It is nice to see that Indian media has picked up the story about antibiotic resistance genes in the heavily polluted Kazipally lake. In this case, it is the Deccan Chronicle who have been reporting on our findings and briefly interviewed Prof. Joakim Larsson about the study. The issue of pharmaceutical pollution of the environment in drug-producing countries is still rather under-reported and public perception of the problem might be rather low. Therefore, it makes me happy to see an Indian newspaper reporting on the issue. The scientific publication referred to can be found here.

Some of you who think ITSx is running slowly despite being assigned multiple CPUs, particularly on datasets with only one kind of sequences (e.g. fungal) using the -t F option might be interested in trying out Andrew Krohn’s parallel ITSx implementation. The solution essentially employs a bash script spawning multiple ITSx instances running on different portions of the input file. Although there are some limitations to the script (e.g. you cannot select a custom name for the output and you will only get the ITS1 and ITS2 + full sequences FASTA files, as far as I understand the script), it may prove useful for many of you until we write up a proper solution to the poor multi-thread performance of ITSx (planned for version 1.1). In the coming months, I recommend that you check this solution out! See also the wiki documentation.

My speed tests shows the following (on a quite small test set of fungal ITS sequences):
ITSx parallel on 16 CPUs, all ITS types (option “-t all“):
3 min, 16 sec
ITSx parallel on 16 CPUs, only fungal ITS types (option “-t f“):
54 sec
ITSx native on 16 CPUs, all ITS types (options “-t all --cpu 16“):
4 min, 59 sec
ITSx native on 16 CPUs, only fungal types (options “-t f --cpu 16“):
5 min, 50 sec

Why fungal only took longer time in the native implementation is a mystery to me, but probably shows why there is a need to rewrite the multithreading code, as we did with Metaxa a couple of years ago. Stay tuned for ITSx updates!

A couple of days ago, a paper I have co-authored describing an ITS sequence dataset for chimera control in fungi went online as an advance online publication in Microbes and Environments. There are several software tools available for chimera detection (e.g. Henrik Nilsson’s fungal chimera checker (1) and UCHIME (2)), but these generally rely on the presence of a chimera-free reference dataset. Until now, there was no such dataset is for the fungal ITS region, and we in this paper (3) introduce a comprehensive, automatically updated reference dataset for fungal ITS sequences based on the UNITE database (4). This dataset supports chimera detection throughout the fungal kingdom and for full-length ITS sequences as well as partial (ITS1 or ITS2 only) datasets. We estimated the dataset performance on a large set of artificial chimeras to be above 99.5%, and also used the dataset to remove nearly 1,000 chimeric fungal ITS sequences from the UNITE database. The dataset can be downloaded from the UNITE repository. Thereby, it is also possible for users to curate the dataset in the future through the UNITE interactive editing tools.

References:

  1. Nilsson RH, Abarenkov K, Veldre V, Nylinder S, Wit P de, Brosché S, Alfredsson JF, Ryberg M, Kristiansson E: An open source chimera checker for the fungal ITS region. Molecular Ecology Resources, 10, 1076–1081 (2010).
  2. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 16, 2194-2200 (2011). doi:10.1093/bioinformatics/btr381
  3. Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM, Bengtsson-Palme J, Walker D, de Sousa F, Gamper HA, Larsson E, Larsson K-H, Kõljalg U, Edgar R, Abarenkov K: A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environments, Advance Online Publication (2015). doi: 10.1264/jsme2.ME14121
  4. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TT, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Senés C, Smith ME, Suija A, Taylor DE, Telleria MT, Weiß M, Larsson KH: Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology, 22, 21, 5271–5277 (2013). doi: 10.1111/mec.12481

In an interesting development, Nature Publishing Group has launched a new initiative: Scientific Data – a online-only open access journal that publishes data sets without the demand of testing scientific hypotheses in connection to the data. That is, the data itself is seen as the valuable product, not any findings that might result from it. There is an immediate upside of this; large scientific data sets might be accessible to the research community in a way that enables proper credit for the sample collection effort. Since there is no demand for a full analysis of the data, the data itself might quicker be of use to others, without worrying that someone else might steal the bang of the data per se. I also see a possible downside, though. It would be easy to hold on to the data until you have analyzed it yourself, and then release it separately just about when you submit the paper on the analysis, generating extra papers and citation counts. I don’t know if this is necessarily bad, but it seems it could contribute to “publishing unit dilution”. Nevertheless, I believe that this is overall a good initiative, although how well it actually works will be up to us – the scientific community. Some info copied from the journal website:

Scientific Data’s main article-type is the Data Descriptor: peer-reviewed, scientific publications that provide an in-depth look at research datasets. Data Descriptors are a combination of traditional scientific publication content and structured information curated in-house, and are designed to maximize reuse and enable searching, linking and data mining. (…) Scientific Data aims to address the increasing need to make research data more available, citable, discoverable, interpretable, reusable and reproducible. We understand that wider data-sharing requires credit mechanisms that reward scientists for releasing their data, and peer evaluation mechanisms that account for data quality and ensure alignment with community standards.

I read an interesting note today in Nature regarding the willingness to be review papers. The author of the note (Dan Graur) claims that scientists that publish many papers contribute less to peer review, and proposes a system in which “journals should ask senior authors to provide evidence of their contribution to peer review as a condition for considering their manuscripts.” I think that this is a very interesting thought, however I see other problems coming with it. Let us for example assume that a senior author is neglecting peer review not to be evil, but simply due to an already monumental workload. If we force peer review on such a person, what kind of reviews do we expect to get back? Will this person be able to fulfill a proper, high-quality, peer review assignment? I doubt it.

On the other hand, I don’t have a good alternative either. If no one wants to do the peer reviewing, that system will inevitably break down. However, I think that there would be better to encourage peer review with positive bonuses, rather than pressure – maybe faster handling times, and higher priority, of papers with authors who have done their share of peer reviewing the last two years? Maybe cheaper publishing costs? In any case, I welcome that the subject is brought up for debate, since it is immensely important for the way we perform science today. Thanks Dan!

I have recently started to receive requests for full-text versions of my publications on ResearchGate. That’s great, but I have yet to figure out how to send them over, without breaking any agreements. As I am in a somewhat intensive work-period at the moment, please forgive me for not spending time on ResearchGate right now. And if you would like full-text versions of my publications, please send me an e-mail! I’ll be glad to help!

For a couple of years, I have been working with microbial ecology and diversity, and how such features can be assessed using molecular barcodes, such as the SSU (16S/18S) rRNA sequence (the Metaxa and Megraft packages). However, I have also been aiming at the ITS region, and how that can be used in barcoding (see e.g. the guidelines we published last year). It is therefore a great pleasure to introduce my next gem for community analysis; a software tool for detection and extraction of the ITS1 and ITS2 regions of ITS sequences from environmental communities. The tool is dubbed ITSx, and supersedes the more specific fungal ITS extractor written by Henrik Nilsson and colleagues. Henrik is once more the mastermind behind this completely rewritten version, in which I have done the lion’s share of the programming. Among the new features in ITSx are:

  • Robust support for the Cantharellus, Craterellus, and Tulasnella genera of fungi
  • Support for nineteen additional eukaryotic groups on top of the already present support for fungi (specifically these groups: Tracheophyta (vascular plants), Bryophyta (bryophytes), Marchantiophyta (liverworts), Chlorophyta (green algae), Rhodophyta (red algae), Phaeophyceae (brown algae), Metazoa (metazoans), Oomycota (oomycetes), Alveolata (alveolates), Amoebozoa (amoebozoans), Euglenozoa, Rhizaria, Bacillariophyta (diatoms), Eustigmatophyceae (eustigmatophytes), Raphidophyceae (raphidophytes), Synurophyceae (synurids), Haptophyceae (haptophytes) , Apusozoa, and Parabasalia (parabasalids))
  • Multi-processor support
  • Extensive output options
  • Virtually zero false-positive extractions

ITSx is today moved from a private pre-release state to a public beta state. No code changes has been made since February, indicative of that the last pre-release candidate is now ready to fly on its own. As far as our testing has revealed, this version seems to be bug free. In reality though, researchers tend to find the most unexpected usage scenarios. So please, if you find any unexpected behavior in this version of ITSx, send me an e-mail and make us aware of the potential shortcomings of our software.

We expect this open-source software to boost research in microbial ecology based on barcoding of the ITS region, and hope that the research community will evaluate its performance also among the eukaryote groups that we have less experience with.

You know the feeling when your assembler supports paired-end sequences, but your FASTQ quality filterer doesn’t care about what pairs that belong together? Meaning that you end up with a mess of sequences that you have to script together in some way. Gosh, that feeling is way too common. It is for situations like that I have put together the Paired-End ToolKit (PETKit), a collection of FASTQ/FASTA sequence handling programs written in Perl. Currently the toolkit contains three command-line tools that does sequence conversion, quality filtering, and ORF prediction, all adapted for paired-end sequences specifically. You can read more about the programs, which are released as open source software, on the PETKit page. At the moment they lack proper documentation, but running the software with the “–help” option should bring up a useful set of options for each tool. This is still considered beta-software, so any bug reports, and especially suggestions, are welcome.

Also, if you have an idea of another problem that is unsolved or badly executed for paired-end sequences, let me know, and I will see if I can implement it in PETKit.

I have co-authored a paper together with, among others, Henrik Nilsson that was published today in MycoKeys. The paper deals with checking quality of DNA sequences prior to using them for research purposes. In our opinion, a lot of the software available for sequence quality management is rather complex and resource intensive. Not everyone have the skills to master such software, and in addition computational resources might also be scarce. Luckily, there’s a lot that can be done in quality control of DNA sequences just using manual means and a web browser. This paper puts these means together into one comprehensible and easy-to-digest document. Our targeted audience is primaily biologists who do not have a strong background in computer science, and still have a dataset requiring DNA sequence quality control.

We have chosen to focus on the fungal ITS barcoding region, but the guidelines should be pretty general and applicable to most groups of organisms. In very short our five guidelines spells:

  1. Establish that the sequences come from the intended gene or marker
    Can be done using a multiple alignment of the sequences and verifying that they all feature some suitable, conserved sub-region (the 5.8S gene in the ITS case)
  2. Establish that all sequences are given in the correct (5’ to 3’) orientation
    Examine the alignment for any sequences that do not align at all to the others; re-orient these; re-run the alignment step; and examine them again
  3. Establish that there are no (at least bad cases of) chimeras in the dataset
    Run the sequences through BLAST in one of the large sequence databases, e.g. at NCBI (or in the ITS case, use the UNITE database), to verify that the best match comprises more or less the full length of the query sequences
  4. Establish that there are no other major technical errors in the sequences
    Examine the BLAST results carefully, particularly the graphical overview and the pairwise alignment, for anomalies (there are some nice figures in the paper on how it should and should not look like)
  5. Establish that any taxonomic annotations given to the sequences make sense
    Examine the BLAST hit list to see that the species names produced make sense

A much more thorough description of these guidelines can be found in the paper itself, which is available under open access from MycoKeys. There’s simply no reason not to go there and at least take a look at it. Happy quality control!

Reference
Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson K-H, Larsson E, Kõljalg U: Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys. Issue 4 (2012), 37–63. doi: 10.3897/mycokeys.4.3606 [Paper link]