Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg

My colleague Henrik Nilsson has been interviewed by the ResearchGate news team about the recent effort to better annotate ITS data for plant pathogenic fungi. It’s an interesting read, and I think Henrik nicely underscores why large-scale efforts for improving and correcting sequence annotations are important. You can read the interview here, and the paper they talk about is referenced below.

Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE, Bahnmann B, Bahram M, Bengtsson-Palme J, Berlin A, Branco S, Chomnunti P, Dissanayake A, Drenkhan R, Friberg H, Frøslev TG, Halwachs B, Hartmann M, Henricot B, Jayawardena R, Jumpponen A, Kauserud H, Koskela S, Kulik T, Liimatainen K, Lindahl B, Lindner D, Liu J-K, Maharachchikumbura S, Manamgoda D, Martinsson S, Neves MA, Niskanen T, Nylinder S, Pereira OL, Pinho DB, Porter TM, Queloz V, Riit T, Sanchez-García M, de Sousa F, Stefaczyk E, Tadych M, Takamatsu S, Tian Q, Udayanga D, Unterseher M, Wang Z, Wikee S, Yan J, Larsson E, Larsson K-H, Kõljalg U, Abarenkov K: Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, Volume 67, Issue 1 (2014), 11–19. doi: 10.1007/s13225-014-0291-8 [Paper link]

In a recent paper in Nature, a completely new antibiotic – teixobactin – is described (1). The really cool thing about this antibiotic is that it was discovered in a screen of uncultured bacteria, grown using new technology that enable controlled growth of single colonies in situ. I really like this idea, and I think the prospect of a novel antibiotic using a previously unexploited mechanism is super-promising, particularly in the light of alarming resistance development in clinically important pathogens (2,3). What really annoys me about the paper is the claim (already in the abstract) that since “we did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin (…) the properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.” To me, this sounds pretty much like a bogus statement; in essence telling me that we apparently have not learned anything from the 70 years of antibiotics usage and resistance development. After working with antibiotic resistance a couple of years, particularly from the environmental perspective, I have a very disturbing feeling that there is already resistance mechanisms against teixobactin waiting out in the wild (4,5). Pretending that lack of mutation-associated resistance development means that there could not be resistance development did not help vancomycin (6,7), and we now see VRE (Vancomycin Resistant Enterococcus) showing up as a major problem in clinics. The “avoid development of resistance” claim is downright irresponsible, and the cynic in me cannot help to think that NovoBiotic Pharmaceuticals (the affiliation of almost half of the authors) has a monetary finger in this jar. In the end, time will tell how “resistance-resilient” teixobactin is and how well we can handle the gift of a novel antibiotic.

  1. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K: A new antibiotic kills pathogens without detectable resistance. Nature (2015). doi:10.1038/nature14098
  2. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, 57: 704–710 (2013).
  3. French GL: The continuing crisis in antibiotic resistance. Int J Antimicrob Agents, 36 Suppl 3:S3–7 (2010).
  4. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5: 648 (2014).
  5. Larsson DGJ: Antibiotics in the environment. Ups J Med Sci, 119: 108–112 (2014).
  6. Wright GD: Mechanisms of resistance to antibiotics. Curr Opin Chem Biol, 7:563–569 (2003).
  7. Werner G, Strommenger B, Witte W: Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol, 3: 547–562 (2008).

We’re approaching Christmas, and this year I will try to spend lots of time with my family and less time at the computer. We’ll see how that goes, but all in all it means that I will most likely not respond promptly to e-mails until after New Year’s, maybe not until January 8 or 9. If, for example, you have asked a support question and have not received a response before January 12 2015, then please feel free to re-send your e-mail as I should then at least have replied that I cannot solve your issue quickly.

A further note for the future is that I will be on parental leave with my lovely nine-month-old during the entire spring, so answering e-mails will not be my highest priority, and might be neglected entirely in periods. I apologize for all kinds of inconveniences that this might cause, especially for Metaxa, ITSx and Megraft users.

Merry Christmas and a Happy New Year!

A minor bug in the “its1.full_and_partial.fasta” file has been fixed in a minor update to ITSx (1.0.11) released to day. The bug occasionally caused newline characters at the end of a sequence to be skipped and the next entry to begin at the same row. The bug only manifested itself when ITSx was used with the --partial option and only in the above mentioned FASTA file. If you have been affected by the bug, you should have noticed as the resulting FASTA file would be considered corrupted by most bioinformatics software. The updated version of ITSx can be downloaded here.

If you’re looking for super-interesting jobs within bioinformatics, you don’t need to look any further. Instead, you should apply for a position at 1928 Diagnostics here in Gothenburg and join them in the fight against antibiotic resistant bacteria. The position is in the development team and the deadline for application is December 19. All the details can be found here.

Our paper describing the bacterial community of a polluted lake in India has now been typeset and appears in its final form in Frontiers in Microbiology. If I may say so, I think that the paper turned out to be very goodlooking and it is indeed nice to finally see it in print. The paper describes an unprecedented diversity and abundance of antibiotic resistance genes and genes enabling transfer of DNA between bacteria. We also describe a range of potential novel plasmids from the lake. Finally, the paper briefly describes a new approach to targeted assembly of metagenomic data — TriMetAss — which can be downloaded here.

Reference:
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648

One of the highlights of the Swedish Bioinformatics Workshop 2014 was of course the dinner entertainment, a song specially crafted for the event. It has now, fortunately, been put online. For anyone who might not catch all the words, here’s the complete lyrics for the song (which is based on the song “Java Jive” in the Manhattan Transfer arrangement):

The Bioinformatics ABC

Grab your coffee
Grab your tea
Put down your spoon now and listen to me
For the bioinformatics ABC
Wake up, wake up, wake up, wake up, wake up
(Boy)

A for ABYSS
B for BLAST
And C for Clustal, though it’s not that fast
Alternatives are Muscle and MAFFT
ABYSS and BLAST and Clustal, Muscle, MAFFT
(Yeah)

D count reads with DESeq or E for EdgeR
And F for FastQC and G for GLIMMER
H for HMMER using Markov Chains
(Explain)
Hidden hidden Markov model

I for Inchworm;
Jellyfish
Add Chrysalis and Butterfly and wish
Assemble fast with a sound that goes swish
Contig, contig, contig, contig, transcript
(Girl)

KBASE
Lasergene
And the ton of tools for metagenomics
MEGAN, Megraft,
MetaPhlan, MG-RAST, Meta-GeneMark
And that’s just mentioning a few of them
(Talk it boy)

N for Newbler, old-school it is
If you’re still using 454 it’s a bliss
O for Oases, P for PyroNoise
45-45-45-454-454

Q is for Quake for that great quality
And R is for all those neat statistics
S for the Spades assembler, oh yeah

T for TopHat
U for Uclust
V for Velvet

There is Wham to align
XMatchView to review
And YASS to pursue
(But do you)
Know any tools beginning with Z?
What?
Yeah, Zorro, Zorro, Zorro
Oh yeah

With the publication of my latest paper last week (1), I also would like to highlight some of the software underpinning the findings a bit. To get around the problem that extremely common resistance genes could be present in multiple contexts and variants, causing assembler such as Velvet (2) to perform sub-optimally, we have written a software tool that utilizes Vmatch (3) and Trinity (4) to iteratively construct contigs from reads associated with resistance genes. This could of course be used in many other situations as well, when you want to specifically assemble a certain portion of a metagenome, but suspect that that portion might be found in multiple contexts.

TriMetAss is a Perl program, employing Vmatch and Trinity to construct multi-context contigs. TriMetAss uses extracted reads associated with, e.g., resistance genes as seeds for a Vmatch search against the complete set of read pairs, extracting reads matching with at least 49 bp (by default) to any of the seed reads. These reads are then assembled using Trinity. The resulting contigs are then used as seeds for another search using Vmatch to the complete set of reads, as above. All matches (including the previously matching read pairs) are again then used for a Trinity assembly. This iterative process is repeated until a stop criteria is met, e.g. when the total number of assembled nucleotides starts to drop rather than increase. The software can be downloaded here.

References:

  1. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648
  2. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–829 (2008). doi:10.1101/gr.074492.107
  3. Kurtz S: The Vmatch large scale sequence analysis software (2010). http://vmatch.de/
  4. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644–652 (2011). doi:10.1038/nbt.1883

The first work in which I have employed metagenomics to investigate antibiotic resistance has been accepted in Frontiers in Microbiology, and is (at the time of writing) available as a provisional PDF. In the paper (1), which is co-authored by Fredrik Boulund, Jerker Fick, Erik Kristiansson and Joakim Larsson, we have used shotgun metagenomic sequencing of an Indian lake polluted by dumping of waste from pharmaceutical production. We used this data to describe the diversity of antibiotic resistance genes and the genetic context of those, to try to predict their genetic transferability. We found resistance genes against essentially every major class of antibiotics, as well as large abundances of genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant in the polluted lake than in a Swedish lake included for comparison, where only eight resistance genes were found. The abundances of resistance genes have previously only been matched by river sediment subject to pollution from pharmaceutical production (2). In addition, we describe twenty-six known and twenty-one putative novel plasmids from the Indian lake metagenome, indicating that there is a large potential for horizontal gene transfer through conjugation. Based on the wide range and high abundance of known resistance factors detected, we believe that it is plausible that novel resistance genes are also present in the lake. We conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. This work further highlights previous findings that pharmaceutical production settings could provide sufficient selection pressure from antibiotics (3) to drive the development of multi-resistant bacteria (4,5), resistance which may ultimately end up in pathogenic species (6,7). The paper can be read in its entirety here.

References:

  1. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, Volume 5, Issue 648 (2014). doi: 10.3389/fmicb.2014.00648
  2. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ: Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, Volume 6, e17038 (2011). doi:10.1371/journal.pone.0017038.
  3. Larsson DGJ, de Pedro C, Paxeus N: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater, Volume 148, 751–755 (2007). doi:10.1016/j.jhazmat.2007.07.008
  4. Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ERB, Larsson DGJ, Shouche YS: A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria. PLoS ONE, Volume 8, e77310 (2013). doi:10.1371/journal.pone.0077310
  5. Johnning A, Moore ERB, Svensson-Stadler L, Shouche YS, Larsson DGJ, Kristiansson E: Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl Environ Microbiol, Volume 79, 7256–7263 (2013). doi:10.1128/AEM.02141-13
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR., et al.: Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect, Volume 121, 878–885 (2013). doi:10.1289/ehp.1206446
  7. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, Volume 57, 704–710 (2013). doi:10.1093/cid/cit355

Metaxa2 update

Comments off

An update to Metaxa2 that has long remained in internal testing has been deemed bug-free (as far as we can tell) and has been uploaded to the Metaxa2 web site. The update brings a slightly improved classifier, and is the first release that we declare full stable, although we have found no problems with the previously available version (release candidate 3). This also means that we take a jump directly from version 2.0, release candidate 3 to version 2.0.1 without passing a final 2.0 release. The update is available here.