Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg | Wisconsin Institute for Discovery

Browsing Posts tagged Barcoding

I have today uploaded an updated version of Metaxa2 (version 2.1.2). This update primarily improves the memory performance of the Metaxa2 Diversity Tools. The core Metaxa2 programs remain the same as for the previous Metaxa2 versions.

New features and bug fixes in this update:

  • Dramatically improved memory performance of metaxa2_uc
  • Added the 'min' option to the -s flag in metaxa2_uc, which will cause the program to sample the number of entries present in the smallest sample from each sample
  • Fixes a bug that disregarded the level specified by the -l option in metaxa2_si
  • Minor updates and improvements on the manual

The updated version of Metaxa2 can be downloaded here.
Happy barcoding!

I am very happy to announce that Metaxa2 version 2.1 has been released today. This new version brings a lot of important improvements to the Metaxa2 software (1), in particular by the introduction of the Metaxa2 Diversity Tools. This is the list of new features (further elaboration follows below):

  • The Metaxa2 Diversity Tools:
    • metaxa2_dc – a tool for collecting several .taxonomy.txt output files into one large abundance matrix, suitable for analysis in, e.g., R
    • metaxa2_rf – generates rarefaction curves based on the .taxonomy.txt output
    • metaxa2_si – species inference based on guessing species data from the other species present in the .taxonomy.txt output file
    • metaxa2_uc – a tool for determining if the community composition of a sample is significantly different from others through resampling analysis
  • Added a new detection mode for detection of multiple rRNA in the same sequence, e.g. a genome
  • Added the --reference option to improve the use of Metaxa2 as a tool to sort out host rRNA sequences from a dataset
  • Added the --split_pairs option causing Metaxa2 to output paired-end sequences into two separate files, which is nice for further analysis of rRNA reads
  • The default setting for the --align option has been changed to ‘none
  • Automatic detection of which BLAST package that is installed
  • Fixed a bug causing the last read of paired-end FASTA input to be ignored
  • Fixed an occasionally occurring BLAST+ related warning message
  • Fixed a bug that could cause the classifier to crash on highly divergent BLAST matches

The new version of Metaxa2 can be downloaded here, and for those interested I will spend the rest of this post outlining the new features.

Metaxa2 Diversity Tools
One often requested feature of Metaxa2 is the ability to further make simple analysis from the data after classification. The Metaxa2 Diversity Tools included in Metaxa2 2.1 is a seed for such an effort (although not close to a full-fledge community analysis package compared to QIIME (2) or Mothur (3)). The set currently consist of four tools

The Metaxa2 Data Collector (metaxa2_dc) is the simplest of them (but probably the most requested), designed to merge the output of several *.level_X.txt files from the Metaxa2 Taxonomic Traversal Tool into one large abundance matrix, suitable for further analysis in, for example, R. The Metaxa2 Species Inference tool (metaxa2_si) can be used to further infer taxon information on, for example, the species level at a lower reliability than what would be permitted by the Metaxa2 classifier, using a complementary algorithm. The idea is that is if only a single species is present in, e.g., a family and a read is assigned to this family, but not classified to the species level, that sequence will be inferred to the same species as the other reads, given that it has more than 97% sequence identity to its best reference match. This can be useful if the user really needs species or genus classifications but many organisms in the studied species group have similar rRNA sequences, making it hard for the Metaxa2 classifier to classify sequences to the species level.

The Metaxa2 Rarefaction analysis tool (metaxa2_rf) performs a rarefaction analysis based on the output from the Metaxa2 classifier, taking into account also the unclassified portion of rRNAs. The Metaxa2 Uniqueness of Community analyzer (metaxa2_uc), finally, allows analysis of whether the community composition of two or more samples or groups is significantly different. Using resampling of the community data, the null hypothesis that the taxonomic content of two communities is drawn from the same set of taxa (given certain abundances) is tested. All these tools are further described in the manual.

The genome mode
Metaxa2 has long been said not to be useful for predicting rRNA in longer sequences, such as full genomes or chromosomes, since it has traditionally only looked for a single rRNA hit. With Metaxa2 2.1, it is now possible to use Metaxa2 on longer sequences to detect multiple rRNA occurrences. To do this, you need to change the operating mode using the new --mode option to either ‘auto‘ or ‘genome‘. The auto mode will treat sequences longer than 2500 bp as “genome” sequences and look for multiple matches in these.

The reference mode
Another feature request that has been addressed in the new Metaxa2 version is the ability to filter out certain sequences from the data set. For example, you may want to exclude all rRNA sequences that are derived from to host organism, but keep the analysis of all other rRNA reads. This is now possible by supplying a file of reference rRNA sequences to exclude in FASTA format to the --reference option.

Experimental Usearch support
Finally, we have toyed around with support for Usearch (4) instead of BLAST (5) as the search algorithm for the classification step. However, this is far from fine-tuned and it is included as an experimental feature that you may use on your own risk! We recommend that you not use it for classification of data for publication yet. However, we are interested in how this works for you, so if you like you may test to run the Usearch algorithm in parallel with your BLAST-based analysis and compare the results and send me your input on how it works. You can read more about using Usearch at the end of the Metaxa2 manual.


  1. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399 [Paper link]
  2. Caporaso JG, Kuczynski J, Stombaugh J et al.: QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336 (2010).
  3. Schloss PD, Westcott SL, Ryabin T et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541 (2009).
  4. Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461 (2010).
  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–3402 (1997).

Metaxa2 has been updated to version 2.0.2 and can be downloaded from the Metaxa2 web site. The 2.0.2 update fixes two minor bugs; one causing the “.graph” file to display incorrect or no names for the regions of the LSU regions, and one causing misreporting of the number of sequences in single-end FASTQ files (paired-end files were reported correctly). The update also brings a slightly improved classifier. Thanks to Marco Severgnini for reporting the FASTQ file issue! The update is available here.

A couple of days ago, a paper I have co-authored describing an ITS sequence dataset for chimera control in fungi went online as an advance online publication in Microbes and Environments. There are several software tools available for chimera detection (e.g. Henrik Nilsson’s fungal chimera checker (1) and UCHIME (2)), but these generally rely on the presence of a chimera-free reference dataset. Until now, there was no such dataset is for the fungal ITS region, and we in this paper (3) introduce a comprehensive, automatically updated reference dataset for fungal ITS sequences based on the UNITE database (4). This dataset supports chimera detection throughout the fungal kingdom and for full-length ITS sequences as well as partial (ITS1 or ITS2 only) datasets. We estimated the dataset performance on a large set of artificial chimeras to be above 99.5%, and also used the dataset to remove nearly 1,000 chimeric fungal ITS sequences from the UNITE database. The dataset can be downloaded from the UNITE repository. Thereby, it is also possible for users to curate the dataset in the future through the UNITE interactive editing tools.


  1. Nilsson RH, Abarenkov K, Veldre V, Nylinder S, Wit P de, Brosché S, Alfredsson JF, Ryberg M, Kristiansson E: An open source chimera checker for the fungal ITS region. Molecular Ecology Resources, 10, 1076–1081 (2010).
  2. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 16, 2194-2200 (2011). doi:10.1093/bioinformatics/btr381
  3. Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM, Bengtsson-Palme J, Walker D, de Sousa F, Gamper HA, Larsson E, Larsson K-H, Kõljalg U, Edgar R, Abarenkov K: A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environments, Advance Online Publication (2015). doi: 10.1264/jsme2.ME14121
  4. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TT, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Senés C, Smith ME, Suija A, Taylor DE, Telleria MT, Weiß M, Larsson KH: Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology, 22, 21, 5271–5277 (2013). doi: 10.1111/mec.12481

A minor bug in the “its1.full_and_partial.fasta” file has been fixed in a minor update to ITSx (1.0.11) released to day. The bug occasionally caused newline characters at the end of a sequence to be skipped and the next entry to begin at the same row. The bug only manifested itself when ITSx was used with the --partial option and only in the above mentioned FASTA file. If you have been affected by the bug, you should have noticed as the resulting FASTA file would be considered corrupted by most bioinformatics software. The updated version of ITSx can be downloaded here.

Metaxa2 update

Comments off

An update to Metaxa2 that has long remained in internal testing has been deemed bug-free (as far as we can tell) and has been uploaded to the Metaxa2 web site. The update brings a slightly improved classifier, and is the first release that we declare full stable, although we have found no problems with the previously available version (release candidate 3). This also means that we take a jump directly from version 2.0, release candidate 3 to version 2.0.1 without passing a final 2.0 release. The update is available here.

After a long delay-time in testing ITSx version 1.0.10 has been made public. The new version patches a bug causing the 3′ anchor not being properly written to file when using the “--anchor hmm” option. If a number was used for the “--anchor” option, this bug did not apply. Thus, if you have not been using the “--anchor” option together with “hmm”, you have not been affected in any way by this bug. Nevertheless, I encourage updating in case you would use the “--anchor hmm” option in the future. The update can be downloaded here. Happy barcoding!

I would like to sincerely apologize for that I have been terrible at responding to support issues pertaining to ITSx, Metaxa, Atosh etc. lately. I am currently on 50% parental leave and at the same time I am wrapping up three first-author papers, organizing a workshop and preparing a talk. Thus, support issues has been lagging a bit behind the last weeks to be able to cope with everything else. I have been ticking off most (all?) of my support questions the last couple of days, but if I have any remaining issues that I have missed to reply to, please re-send them to me!

I will try to improve response times, but it is hard when I am working less than usual (also, note that I (strangely) don’t get paid for supporting software, so I have to do this on my “sparetime”). My aim is to respond within a few days, so if I have not done so, please resend your e-mail with a friendly reminder that you are waiting for my response. Reminding me will very likely put your question up the priority pile.

So, my advice to becoming dads is: Do take paternal leave. Do take a lot of it. Share responsibilities with your partner. Because what you get back is awesome. (And also you get a good reason not to answer support questions in time.) But finally, don’t plan to wrap up the last couple of year’s worth of work and arrange a conference at the same time as you take out paternal leave. That will only make you feel insufficient at all fronts.

Keep the spirit high!

Another paper I have made a contribution to have just recently been published in Molecular Ecology Resources. The paper (1), which is lead-authored by Xin-Cun Wang and Chang Liu at the Institute of Medicinal Plant Development in Beijing, investigates the usability of the ITS1 and ITS2 as separate barcodes across the Eukaryotes. The study is a large scale meta-analysis comparing available high-quality sequence data in as many taxonomic groups at possible from three different aspects: PCR amplification, DNA sequencing efficiency and species discrimination ability. Specifically, we have looked for the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality, using bioinformatic approaches. We found that the ITS1 had significantly higher efficiencies than the ITS2 in 17 of 47 families and 20 of 49 investigated genera, which was markedly better than the performance of ITS2. We conclude that, in general, ITS1 represents a better DNA barcode than ITS2 for a majority of eukaryotic taxonomic groups. This of course doesn’t mean that using the ITS2 or the ITS region in its entirety should be dismissed, but our results can serve as a ground for making informed decisions about which region to choose for your amplicon sequencing project. The results complement what have previously been observed for e.g. fungi, where the difference between ITS1 and ITS2 were much less pronounced (2).


  1. Wang X-C, Liu C, Huang L, Bengtsson-Palme J, Chen H, Zhang J-H, Cai D, Li J-Q: ITS1: A DNA barcode better than ITS2 in eukaryotes? Molecular Ecology Resources. Early view. doi: 10.1111/1755-0998.12325 [Paper link]
  2. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H: ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources. Volume 13, Issue2, Page 218-224. doi: 10.1111/1755-0998.12065 [Paper link]

I and one of the other developers of ITSx had a discussion a while ago about that using the --anchor option should output the “anchor sequences” around the ITS regions also for the full-length output file (given that the --truncate option is activated). I have today changed ITSx to employ this behaviour, updating it to version 1.0.9. The update also improves sensitivity when using the --anchor HMM option slightly, and can be downloaded here. Happy barcoding!