Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg

Browsing Posts tagged BLAST

I got a very nice little e-mail yesterday evening, which made me realize that when I posted the Metaxa 2.1 update, I forgot to thank and credit the wonderful Metaxa/Metaxa2 community who have contributed with input on which Metaxa2 features that they would like to see implemented. Particularly, I would like to thank Thomas Haverkamp who suggested the reference option, Åsa Sjöling who brainstormed what led to the metaxa2_uc tool with me, and everyone who have suggested various downstream analysis tricks that have got baked into the Metaxa2 Diversity Tools.

Within the Metaxa team I would like to specifically thank Kaisa Thorell (particularly for the --split_pairs option) and Martin Hartmann (who said that the software should obviously be able to detect which BLAST version that was installed), who keep pushing for features and ideas to make the software better. Thanks a lot to all of you, and have a nice weekend!

I am very happy to announce that Metaxa2 version 2.1 has been released today. This new version brings a lot of important improvements to the Metaxa2 software (1), in particular by the introduction of the Metaxa2 Diversity Tools. This is the list of new features (further elaboration follows below):

  • The Metaxa2 Diversity Tools:
    • metaxa2_dc – a tool for collecting several .taxonomy.txt output files into one large abundance matrix, suitable for analysis in, e.g., R
    • metaxa2_rf – generates rarefaction curves based on the .taxonomy.txt output
    • metaxa2_si – species inference based on guessing species data from the other species present in the .taxonomy.txt output file
    • metaxa2_uc – a tool for determining if the community composition of a sample is significantly different from others through resampling analysis
  • Added a new detection mode for detection of multiple rRNA in the same sequence, e.g. a genome
  • Added the --reference option to improve the use of Metaxa2 as a tool to sort out host rRNA sequences from a dataset
  • Added the --split_pairs option causing Metaxa2 to output paired-end sequences into two separate files, which is nice for further analysis of rRNA reads
  • The default setting for the --align option has been changed to ‘none
  • Automatic detection of which BLAST package that is installed
  • Fixed a bug causing the last read of paired-end FASTA input to be ignored
  • Fixed an occasionally occurring BLAST+ related warning message
  • Fixed a bug that could cause the classifier to crash on highly divergent BLAST matches

The new version of Metaxa2 can be downloaded here, and for those interested I will spend the rest of this post outlining the new features.

Metaxa2 Diversity Tools
One often requested feature of Metaxa2 is the ability to further make simple analysis from the data after classification. The Metaxa2 Diversity Tools included in Metaxa2 2.1 is a seed for such an effort (although not close to a full-fledge community analysis package compared to QIIME (2) or Mothur (3)). The set currently consist of four tools

The Metaxa2 Data Collector (metaxa2_dc) is the simplest of them (but probably the most requested), designed to merge the output of several *.level_X.txt files from the Metaxa2 Taxonomic Traversal Tool into one large abundance matrix, suitable for further analysis in, for example, R. The Metaxa2 Species Inference tool (metaxa2_si) can be used to further infer taxon information on, for example, the species level at a lower reliability than what would be permitted by the Metaxa2 classifier, using a complementary algorithm. The idea is that is if only a single species is present in, e.g., a family and a read is assigned to this family, but not classified to the species level, that sequence will be inferred to the same species as the other reads, given that it has more than 97% sequence identity to its best reference match. This can be useful if the user really needs species or genus classifications but many organisms in the studied species group have similar rRNA sequences, making it hard for the Metaxa2 classifier to classify sequences to the species level.

The Metaxa2 Rarefaction analysis tool (metaxa2_rf) performs a rarefaction analysis based on the output from the Metaxa2 classifier, taking into account also the unclassified portion of rRNAs. The Metaxa2 Uniqueness of Community analyzer (metaxa2_uc), finally, allows analysis of whether the community composition of two or more samples or groups is significantly different. Using resampling of the community data, the null hypothesis that the taxonomic content of two communities is drawn from the same set of taxa (given certain abundances) is tested. All these tools are further described in the manual.

The genome mode
Metaxa2 has long been said not to be useful for predicting rRNA in longer sequences, such as full genomes or chromosomes, since it has traditionally only looked for a single rRNA hit. With Metaxa2 2.1, it is now possible to use Metaxa2 on longer sequences to detect multiple rRNA occurrences. To do this, you need to change the operating mode using the new --mode option to either ‘auto‘ or ‘genome‘. The auto mode will treat sequences longer than 2500 bp as “genome” sequences and look for multiple matches in these.

The reference mode
Another feature request that has been addressed in the new Metaxa2 version is the ability to filter out certain sequences from the data set. For example, you may want to exclude all rRNA sequences that are derived from to host organism, but keep the analysis of all other rRNA reads. This is now possible by supplying a file of reference rRNA sequences to exclude in FASTA format to the --reference option.

Experimental Usearch support
Finally, we have toyed around with support for Usearch (4) instead of BLAST (5) as the search algorithm for the classification step. However, this is far from fine-tuned and it is included as an experimental feature that you may use on your own risk! We recommend that you not use it for classification of data for publication yet. However, we are interested in how this works for you, so if you like you may test to run the Usearch algorithm in parallel with your BLAST-based analysis and compare the results and send me your input on how it works. You can read more about using Usearch at the end of the Metaxa2 manual.

References

  1. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399 [Paper link]
  2. Caporaso JG, Kuczynski J, Stombaugh J et al.: QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336 (2010).
  3. Schloss PD, Westcott SL, Ryabin T et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541 (2009).
  4. Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461 (2010).
  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–3402 (1997).

Metaxa2 is here!

1 comment

The new version of MetaxaMetaxa2 – which I first started talking about more than 1.5 years ago, has finally been determined to be so stable that we can officially release it! The release come around the same time as we submitted a paper describing the changes in it, but I will briefly go through the changes here:

  • Metaxa2 now handles extraction and classification of LSU rRNA sequences in addition to SSU rRNA
  • The classification engine has been completely redesigned, and now enables accurate taxonomic classifications down to the genus – or in some cases – species level
  • The classification database has been updated, and is now based on the SILVA 111 release
  • The Metaxa2 Taxonomic Traversal Tool – metaxa2_ttt – has been added to the package, to ease the counting of rRNA sequences in different organism groups (at various taxonomic levels)
  • Metaxa2 adds support for paired-end libraries
  • It is now possible to directly input of sequences in FASTQ-format to Metaxa2
  • The support for libraries with short read lengths (~100 bp) has been vastly improved (and is now assumed to be the case for default settings)
  • Metaxa2 can do quality pre-filtering of reads in FASTQ-format
  • Metaxa2 adds support for the modern BLAST+ package (although the old blastall version is still default)
  • Compatibility with the HMMER 3.1 beta

Metaxa2 brings together a large set of features that we have been gradually incorporating since 2011, many of which have been dependent on each other. Most of the new features and changes are thoroughly explained in the manual. While we hope Metaxa2 is bug free, there will likely be bugs caused by usage scenarios we have not envisioned. I therefore encourage anyone who come across some unexpected behavior to send me an e-mail. Especially, I would like to know about how the software performs using HMMER 3.1 and BLAST+, where testing has been limited compared to older parts of the code.

We hope that you will find Metaxa2 useful, and that it will bring taxonomic assessment of metagenomes another step forward! Metaxa2 can be downloaded here.

I have fixed a long-standing bug in the Bloutminer script, which has thereby been pushed to version 0.9.6. The new version fixes an issue when using the -o blast option without the -n option. The new version can be downloaded here.

Those attending the Metagenomics lab (part of the basic NGS course for PhD students given at GU this week), can find the material for the lab on this page:
http://microbiology.se/ngs-metagenomics-lab/
Of course, the page is open for anyone else as well, although you won’t get the support that the GU students are given.

Some users have asked me to fix a table output bug in Metaxa, and I have finally got around to do so. The fix is released today in the 1.1.2 Metaxa package (download here). This version also brings an updated manual (finally), as the User’s Guide has lagged behind since version 1.0. Please continue to report bugs to metaxa [at sign] microbiology [dot] se

Download the Metaxa package

Read the manual

Good news for everyone using my bloutminer script; it has received an update making it even more useful! Basically, I have added a function to extract the top N matches to each query (using the -n option), and I have also added the ability to output a filtered set of sequences in the same tabulated BLAST-format as the input came in. Thereby, bloutminer can now be used in more settings to easily filter out a subset in a large BLAST report (in tabular format, generated using the blastall -m 8 option). The script can be downloaded here: http://microbiology.se/software/

I have co-authored a paper together with, among others, Henrik Nilsson that was published today in MycoKeys. The paper deals with checking quality of DNA sequences prior to using them for research purposes. In our opinion, a lot of the software available for sequence quality management is rather complex and resource intensive. Not everyone have the skills to master such software, and in addition computational resources might also be scarce. Luckily, there’s a lot that can be done in quality control of DNA sequences just using manual means and a web browser. This paper puts these means together into one comprehensible and easy-to-digest document. Our targeted audience is primaily biologists who do not have a strong background in computer science, and still have a dataset requiring DNA sequence quality control.

We have chosen to focus on the fungal ITS barcoding region, but the guidelines should be pretty general and applicable to most groups of organisms. In very short our five guidelines spells:

  1. Establish that the sequences come from the intended gene or marker
    Can be done using a multiple alignment of the sequences and verifying that they all feature some suitable, conserved sub-region (the 5.8S gene in the ITS case)
  2. Establish that all sequences are given in the correct (5’ to 3’) orientation
    Examine the alignment for any sequences that do not align at all to the others; re-orient these; re-run the alignment step; and examine them again
  3. Establish that there are no (at least bad cases of) chimeras in the dataset
    Run the sequences through BLAST in one of the large sequence databases, e.g. at NCBI (or in the ITS case, use the UNITE database), to verify that the best match comprises more or less the full length of the query sequences
  4. Establish that there are no other major technical errors in the sequences
    Examine the BLAST results carefully, particularly the graphical overview and the pairwise alignment, for anomalies (there are some nice figures in the paper on how it should and should not look like)
  5. Establish that any taxonomic annotations given to the sequences make sense
    Examine the BLAST hit list to see that the species names produced make sense

A much more thorough description of these guidelines can be found in the paper itself, which is available under open access from MycoKeys. There’s simply no reason not to go there and at least take a look at it. Happy quality control!

Reference
Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson K-H, Larsson E, Kõljalg U: Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys. Issue 4 (2012), 37–63. doi: 10.3897/mycokeys.4.3606 [Paper link]

I proudly announce that today Metaxa has been officially released. Metaxa is a a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequence datasets. We have been working on Metaxa for quite some time, and it has now been in beta for about two months. However, it seems to be stable enough for public consumption. In addition, the software package is today presented in a talk at the SocBiN conference in Helsinki.

A more thorough post on the rationale behind Metaxa, and how it works will follow when I am not occupied by the SocBiN conference. A paper on Metaxa is to be published in the journal Antonie van Leeuwenhoek. The  software can be downloaded from here.

I have put some “new” software online. I have had this piece of code lying around for some time but never got to upload it as I didn’t view it as “finished”. It is still not finished, but I would nevertheless like to share it with a wider audience. So, today I introduce bloutminer – the BLAST output mining script I have been using lately. bloutminer allows you to specify e.g. an E-value cutoff, a length cutoff and a percent identity cutoff, and extract a list of the hits satisfying these cutoffs. It takes table output (blastall option -m 8 ) as input. This is the software I used for the BLAST visualisation I have discussed earlier.

I normally use an E-value cutoff of 10 for my BLAST searches, and then extracts hits with bloutminer, allowing me to change the cutoffs at a later stage without redoing the whole BLAST search. You can also “pool” sequences into groups, based on their sequence tags. bloutminer is work in progress, and may contain nasty bugs. It can be found on the Software page. Please improve it at will.