Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg

Browsing Posts tagged Environment

MycoKeys today put a paper online which I was involved in. The paper describes the results of a workshop in May, when we added and refined annotations for fungal ITS sequences according to the MIxS-Built Environment annotation standard (1). Fungi have been associated with a range of unwanted effects in the built environment, including asthma, decay of building materials, and food spoilage. However, the state of the metadata annotation of fungal DNA sequences from the built environment is very much incomplete in public databases. The workshop aimed to ease a little part of this problem, by distributing the re-annotation of public fungal ITS sequences across 36 persons. In total, we added or changed of 45,488 data points drawing from published literature, including addition of 8,430 instances of countries of collection, 5,801 instances of building types, and 3,876 instances of surface-air contaminants. The results have been implemented in the UNITE database and shared with other online resources. I believe, that distributed initiatives like this (and the ones I have been involved in in the past (2,3)) serve a very important purpose for establishing better annotation of sequence data, an issue I have brought up also for sequences outside of barcoding genes (4). The full paper can be found here.

References

  1. Abarenkov K, Adams RI, Laszlo I, Agan A, Ambrioso E, Antonelli A, Bahram M, Bengtsson-Palme J, Bok G, Cangren P, Coimbra V, Coleine C, Gustafsson C, He J, Hofmann T, Kristiansson E, Larsson E, Larsson T, Liu Y, Martinsson S, Meyer W, Panova M, Pombubpa N, Ritter C, Ryberg M, Svantesson S, Scharn R, Svensson O, Töpel M, Untersehrer M, Visagie C, Wurzbacher C, Taylor AFS, Kõljalg U, Schriml L, Nilsson RH: Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 16, 1–15 (2016). doi: 10.3897/mycokeys.16.10000
  2. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TT, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Senés C, Smith ME, Suija A, Taylor DE, Telleria MT, Weiß M, Larsson KH: Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology, 22, 21, 5271–5277 (2013). doi: 10.1111/mec.12481
  3. Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE, Bahnmann B, Bahram M, Bengtsson-Palme J, Berlin A, Branco S, Chomnunti P, Dissanayake A, Drenkhan R, Friberg H, Frøslev TG, Halwachs B, Hartmann M, Henricot B, Jayawardena R, Jumpponen A, Kauserud H, Koskela S, Kulik T, Liimatainen K, Lindahl B, Lindner D, Liu J-K, Maharachchikumbura S, Manamgoda D, Martinsson S, Neves MA, Niskanen T, Nylinder S, Pereira OL, Pinho DB, Porter TM, Queloz V, Riit T, Sanchez-García M, de Sousa F, Stefaczyk E, Tadych M, Takamatsu S, Tian Q, Udayanga D, Unterseher M, Wang Z, Wikee S, Yan J, Larsson E, Larsson K-H, Kõljalg U, Abarenkov K: Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 67, 1, 11–19 (2014). doi: 10.1007/s13225-014-0291-8
  4. Bengtsson-Palme J, Boulund F, Edström R, Feizi A, Johnning A, Jonsson VA, Karlsson FH, Pal C, Pereira MB, Rehammar A, Sánchez J, Sanli K, Thorell K: Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics, Early view (2016). doi: 10.1002/pmic.201600034

After a long wait (1), Science of the Total Environment has finally decided to make our paper on selection of antibiotic resistance genes in sewage treatment plants (STPs) available (2). STPs are often suggested to be “hotspots” for emergence and dissemination of antibiotic-resistant bacteria (3-6). However, we actually do not know if the selection pressures within STPs, that can be caused either by residual antibiotics or other co-selective agents, are sufficiently large to specifically promote resistance. To better understand this, we used shotgun metagenomic sequencing of samples from different steps of the treatment process (incoming water, treated water, primary sludge, recirculated sludge and digested sludge) in three Swedish STPs in the Stockholm area to characterize the frequencies of resistance genes to antibiotics, biocides and metal, as well as mobile genetic elements and taxonomic composition. In parallel, we also measured concentrations of antibiotics, biocides and metals.

We found that only the concentrations of tetracycline and ciprofloxacin in the influent water were above those that we predict to cause resistance selection (7). However, there was no consistent enrichment of resistance genes to any particular class of antibiotics in the STPs, neither for biocide and metal resistance genes. Instead, the most substantial change of the bacterial communities compared to human feces (sampled from Swedes in another study of ours (8)) occurred already in the sewage pipes, and was manifested by a strong shift from obligate to facultative anaerobes. Through the treatment process, resistance genes against antibiotics, biocides and metals were not reduced to the same extent as fecal bacteria were.

Worryingly, the OXA-48 beta-lactamase gene was consistently enriched in surplus and digested sludge. OXA-48 is still rare in Swedish clinical isolates (9), but provides resistance to carbapenems, one of our most critically important classes of antibiotics. However, taken together metagenomic sequencing did not provide clear support for any specific selection of antibiotic resistance. Rather, since stronger selective forces affect gross taxonomic composition, and thereby also resistance gene abundances, it is very hard to interpret the metagenomic data from a risk-for-selection perspective. We therefore think that comprehensive analyses of resistant vs. non-resistant strains within relevant species are warranted.

Taken together, the main take-home messages of the paper (2) are:

  • There were no apparent evidence for direct selection of resistance genes by antibiotics or co-selection by biocides or metals
  • Abiotic factors (mostly oxygen availability) strongly shape taxonomy and seems to be driving changes of resistance genes
  • Metagenomic and/or PCR-based community studies may not be sufficiently sensitive to detect selection effects, as important shifts towards resistant may occur within species and not on the community level
  • The concentrations of antibiotics, biocides and metals were overall reduced, but not removed in STPs. Incoming concentrations of antibiotics in Swedish STPs are generally low
  • Resistance genes are overall reduced through the treatment process, but far from eliminated

References and notes

  1. Okay, those who takes notes know that I have already complained once before on Science of the Total Environment’s ridiculously long production handling times. But, seriously, how can a journal’s production team return the proofs for after three days of acceptance, and then wait seven weeks before putting the final proofs online? I still wonder what is going on beyond the scenes, which is totally obscure because the production office also refuses to respond to e-mails. Not a nice publishing experience this time either.
  2. Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach C-F, Kristiansson E, Fick J, Tysklind M, Larsson DGJ: Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Science of the Total Environment, in press (2016). doi: 10.1016/j.scitotenv.2016.06.228 [Paper link]
  3. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D: Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the Total Environment, 447, 345–360 (2013). doi: 10.1016/j.scitotenv.2013.01.032
  4. Laht M, Karkman A, Voolaid V, Ritz C, Tenson T, Virta M, Kisand V: Abundances of Tetracycline, Sulphonamide and Beta-Lactam Antibiotic Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load. PLoS ONE, 9, e103705 (2014). doi: 10.1371/journal.pone.0103705
  5. Yang Y, Li B, Zou S, Fang HHP, Zhang T: Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Research, 62, 97–106 (2014). doi: 10.1016/j.watres.2014.05.019
  6. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al.: Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13, 310–317 (2015). doi: 10.1038/nrmicro3439
  7. Bengtsson-Palme J, Larsson DGJ: Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149 (2016). doi: 10.1016/j.envint.2015.10.015
  8. Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E, Palmgren H, Larsson DGJ, Johansson A: The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrobial Agents and Chemotherapy, 59, 10, 6551–6560 (2015). doi: 10.1128/AAC.00933-15
  9. Hellman J, Aspevall O, Bengtsson B, Pringle M: SWEDRES-SVARM 2014. Consumption of antimicrobials and occurrence of antimicrobial resistance in Sweden. Public Health Agency of Sweden and National Veterinary Institute, Solna/Uppsala, Sweden. Report No.: 14027. Available from: http://www.folkhalsomyndigheten.se/publicerat-material/ (2014)

So, on Thursday (May 26th) I will defend my thesis, titled “Antibiotic resistance in the environment: a contribution from metagenomic studies”. I will not dwell into this by writing a novel text, but will instead shamelessly reproduce the press release, which should give a reasonable overview of what I have been doing:

More and more people are infected with antibiotic resistant bacteria. But how do bacteria become resistant? A doctoral thesis from the Centre for Antibiotic Resistance Research at University of Gothenburg has investigated the role of the environment in the development of antibiotic resistance.

“An important question we asked was how low concentrations of antibiotics that can favour the growth of resistant bacteria in the environment”, says Johan Bengtsson-Palme, author of the thesis.

“Based on our analyses, we propose emission limits for 111 antibiotics that should not be exceeded in order to avoid that environmental bacteria become more resistant.”

A starting point to regulate antibiotic pollution
A recent report, commissioned by the British Prime Minister David Cameron, proposes that the emission limits suggested in Johan’s thesis should be used as a starting point to regulate antibiotic pollution from, for example, pharmaceutical production – globally.

“Many people are surprised that such regulations are not already in place, but today it is actually not a crime to discharge wastewater contaminated with large amounts of antibiotics, not even in Europe”, says Johan Bengtsson-Palme.

Resistance genes
In one of the studies in the thesis, the researchers show that resistance genes against a vast range of antibiotics are enriched in an Indian lake polluted by dumping of wastewater from pharmaceutical production.

“It’s scary. Not only do the bacteria carry a multitude of resistance genes. They are also unusually well adapted to share those genes with other bacteria. If a disease-causing bacterium ends up in the lake, it may quickly pick up the genes it needs to become resistant. Since the lake is located close to residential areas, such spread of resistant bacteria to humans is not hard to imagine”, says Johan Bengtsson-Palme.

Spreading by travelers
The thesis also shows that resistant bacteria spread in the intestines of travelers who have visited India or Central Africa, even if the travelers themselves have not become sick.

“That resistant bacteria spread so quickly across the planet highlights that we must adopt a global perspective on the resistance problem”, says Johan Bengtsson-Palme. “Furthermore, it is not enough to reduce the use of antibiotics in healthcare. We must also reduce the use of antibiotics for animals, and try to limit the releases of antibiotics into the environment to try to get control over the growing antibiotic resistance problem before it is too late”.

The thesis Antibiotic resistance in the environment: a contribution from metagenomic studies will be defended on a dissertation on May 26th.

In the most recent issue of the Medicine Maker (#0416), there is a short opinion piece by me and Joakim Larsson, in which we argue for that pharmaceutical companies should live up to their ethical responsibilities, and may actually benefit from doing so (1). We were invited to write for the Medicine Maker based on our recent papers on proposed limits for antibiotic discharges into the environment (2) and minimal selective concentrations (3).

We argue that now as PNECs for resistance selection are available, they should be applied in regulatory contexts. The recent O’Neill report on antimicrobial resistance (commissioned by the British Government) specifically highlighted the urgent need for enforceable regulations on antibiotic discharges (4). The concentrations we reported in our Environment International paper (2) can be used by local, national and international authorities to define emission limits for antibiotic-producing factories, but also for pharmaceutical companies to assess and manage risks for resistance selection associated with their own discharges.

The Medicine Maker can be read for free, but requires registration to access its full content. The full opinion piece can be found here.

References

  1. Bengtsson-Palme J, Larsson DGJ: Time to limit antibiotic pollution. The Medicine Maker, 0416, 302, 17–18 (2016). [Paper link]
  2. Bengtsson-Palme J, Larsson DGJ: Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149 (2016). doi: 10.1016/j.envint.2015.10.015 [Paper link]
  3. Lundström S, Östman M, Bengtsson-Palme J, Rutgersson C, Thoudal M, Sircar T, Blanck H, Eriksson KM, Tysklind M, Flach C-F, Larsson DGJ: Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Science of the Total Environment, 553, 587–595 (2016). doi: 10.1016/j.scitotenv.2016.02.103 [Paper link]
  4. Review on Antimicrobial Resistance: Antimicrobials in agriculture and the environment: Reducing unnecessary use and waste (J O’Neill, Ed,) (2015). [Link].

After a long wait (1) Sara Lundström’s paper establishing minimal selective concentrations (MSCs) for the antibiotic tetracycline in complex microbial communities (2), of which I am a co-author, has gone online. Personally, I think this paper is among the finest work I have been involved in; a lot of good science have gone into this publication. Risk assessment and management of antibiotics pollution is in great need of scientific data to underpin mitigation efforts (3). This paper describes a method to determine the minimal selective concentrations of antibiotics, and investigates different endpoints for measuring those MSCs. The method involves a testing system highly relevant for aquatic communities, in which bacteria are allowed to form biofilms in aquaria under controlled antibiotic exposure. Using the system, we find that 1 μg/L tetracycline selects for the resistance genes tetA and tetG, while 10 μg/L tetracycline is required to detect changes of phenotypic resistance. In short, the different endpoints studied (and their corresponding MSCs) were:

  • CFU counts on R2A plates with 20 μg/mL tetracycline – MSC = 10 μg/L
  • MIC range – MSC ~ 10-100 μg/L
  • PICT, leucine uptake after short-term TC challenge – MSC ~ 100 μg/L
  • Increased resistance gene abundances, metagenomics – MSC range: 0.1-10 μg/L
  • Increased resistance gene abundances, qPCR (tetA and tetG) – MSC ≤ 1 μg/L
  • Changes to taxonomic diversity – no significant changes detected
  • Changes to taxonomic community composition – MSC ~ 1-10 μg/L

This study confirms that the estimated PNECs we reported recently (4) correspond well to experimentally determined MSCs, at least for tetracycline. Importantly, the selective concentrations we report for tetracycline overlap with those that have been reported in sewage treatment plants (5). We also see that tetracycline not only selects for tetracycline resistance genes, but also resistance genes against other classes of antibiotics, including sulfonamides, beta-lactams and aminoglycosides. Finally, the approach we describe can be used for improved in risk assessment for (also other) antibiotics, and to refine the emission limits we suggested in a recent paper based on theoretical calculations (4).

References and notes

  1. Okay, seriously: how can a journal’s production team return the proofs for a paper within 24 hours of acceptance, and then wait literally five weeks before putting the final proofs online? Nothing against STOTEN, but I honestly wonder what was going on beyond the scenes here.
  2. Lundström SV, Östman M, Bengtsson-Palme J, Rutgersson C, Thoudal M, Sircar T, Blanck H, Eriksson KM, Tysklind M, Flach C-F, Larsson DGJ: Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Science of the Total Environment, 553, 587–595 (2016). doi: 10.1016/j.scitotenv.2016.02.103 [Paper link]
  3. Ågerstrand M, Berg C, Björlenius B, Breitholtz M, Brunstrom B, Fick J, Gunnarsson L, Larsson DGJ, Sumpter JP, Tysklind M, Rudén C: Improving environmental risk assessment of human pharmaceuticals. Environmental Science and Technology (2015). doi:10.1021/acs.est.5b00302
  4. Bengtsson-Palme J, Larsson DGJ: Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140-149 (2016). doi: 10.1016/j.envint.2015.10.015
  5. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47, 957–995 (2013). doi:10.1016/j.watres.2012.11.027

Yesterday was an intensive day for typesetters apparently, since they put two of my papers online on the same day. This second paper was published in Environment International, and focuses on predicting minimal selective concentrations for all antibiotics present in the EUCAST database (1).

Today (well, up until yesterday at least), we have virtually no knowledge of which environmental concentrations that can exert a selection pressure for antibiotic resistant bacteria. However, experimentally determining minimal selective concentrations (MSCs) in complex ecosystems would involve immense efforts if done for all antibiotics. Therefore, efforts to theoretically determine MSCs for different antibiotics have been suggested (2,3). In this paper we therefore estimate upper boundaries for selective concentrations for all antibiotics in the EUCAST database, based on the assumption that selective concentrations a priori must be lower than those completely inhibiting growth. Data on Minimal Inhibitory Concentrations (MICs) were obtained for 122 antibiotics and antibiotics combinations, the lowest observed MICs were identified for each of those across all tested species, and to compensate for limited species coverage, we adjusted the lowest MICs for the number of tested species. We finally assessed Predicted No Effect Concentrations (PNECs) for resistance selection using an assessment factor of 10 to account for the differences between MICs and MSCs. Since we found that the link between taxonomic similarity between species and lowest MIC was weak, we have not compensated for the taxonomic diversity that each antibiotic was tested against – only for limited number of species tested. In most cases, our PNECs for selection of resistance were below available PNECs for ecotoxicological effects retrieved from FASS. Also, concentrations predicted to be selective have, for some antibiotics, been detected in regular sewage treatment plants (4), and are greatly exceeded in environments polluted by pharmaceutical pollution (5-7), often with drastic consequences in terms of resistance gene enrichments (8-10). This is a central issue since in principle a transfer event of a novel resistance determinant from an environmental bacteria to an (opportunistic) human pathogen only need to occur once to become a clinical problem (11). Once established, the gene could then spread through human activities, such as trade and travel (7,13). Importantly, this paper:

The paper is available under open access here. We hope, and believe, that the data will be of great use in environmental risk assessments, in efforts by industries, regulatory agencies or purchasers of medicines to define acceptable environmental emissions of antibiotics, in the implementation of environmental monitoring programs, for directing mitigations, and for prioritizing future studies on environmental antibiotic resistance.

References:

  1. Bengtsson-Palme J, Larsson DGJ: Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140-149 (2016). doi: 10.1016/j.envint.2015.10.015 [Paper link]
  2. Ågerstrand M, Berg C, Björlenius B, Breitholtz M, Brunstrom B, Fick J, Gunnarsson L, Larsson DGJ, Sumpter JP, Tysklind M, Rudén C: Improving environmental risk assessment of human pharmaceuticals. Environmental Science and Technology (2015). doi:10.1021/acs.est.5b00302
  3. Tello A, Austin B, Telfer TC: Selective pressure of antibiotic pollution on bacteria of importance to public health. Environmental Health Perspectives, 120, 1100–1106 (2012). doi:10.1289/ehp.1104650
  4. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47, 957–995 (2013). doi:10.1016/j.watres.2012.11.027
  5. Larsson DGJ, de Pedro C, Paxeus N: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148, 751–755 (2007). doi:10.1016/j.jhazmat.2007.07.008
  6. Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ: Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28, 2522–2527 (2009). doi:10.1897/09-073.1
  7. Larsson DGJ: Pollution from drug manufacturing: review and perspectives. Philosophical Transactions of the Royal Society London, Series B Biological Sciences, 369 (2014). doi:10.1098/rstb.2013.0571
  8. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, Volume 5, Issue 648 (2014). doi: 10.3389/fmicb.2014.00648 [Paper link]
  9. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ: Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, Volume 6, e17038 (2011). doi:10.1371/journal.pone.0017038.
  10. Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ERB, Larsson DGJ, Shouche YS: A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria. PLoS ONE, Volume 8, e77310 (2013). doi:10.1371/journal.pone.0077310
  11. Bengtsson-Palme J, Larsson DGJAntibiotic resistance genes in the environment: prioritizing risks. Nature Reviews Microbiology, 13, 369 (2015). doi: 10.1038/nrmicro3399-c1 [Paper link]
  12. Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E, Palmgren H, Larsson DGJ, Johansson A: The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrobial Agents and Chemotherapy, 59, 10, 6551-6560 (2015). doi: 10.1128/AAC.00933-15 [Paper link]

Yesterday, a paper I co-authored with my colleagues Chandan Pal, Erik Kristiansson and Joakim Larsson on the co-occurences of resistance genes against antibiotics, biocides and metals in bacterial genomes and plasmids became published in BMC Genomics. In this paper (1) we utilize the publicly available, fully sequenced, genomes and plasmids in GenBank to investigate the co-occurence network of resistance genes, to better understand risks for co-selection for resistance against different types of compounds. In short, the findings of the paper are that:

  • ARGs are associated with BMRG-carrying bacteria and the co-selection potential of biocides and metals is specific towards certain antibiotics
  • Clinically important genera host the largest numbers of ARGs and BMRGs and those also have the highest co-selection potential
  • Bacteria isolated from human and domestic animal origins have the highest co-selection potential
  • Plasmids with co-selection potential tend to be conjugative and carry toxin-antitoxin systems
  • Mercury and QACs are potential co-selectors of ARGs on plasmids, however BMRGs are common on chromosomes and could still have indirect co-selection potential
  • 14 percent of bacteria and more than 70% of the plasmids completely lacked resistance genes

This analysis was possible thanks to the BacMet database of antibacterial biocide and metal resistance genes, published about two years ago (2). The visualization of the plasmid co-occurence network we ended up with can be seen below. Note the strong connection between the mercury resistance mer operon and the antibiotic resistance genes to the right.

On a side note, it is interesting to note that the underrepresentation of detoxification systems in marine environments we noted last year (3) still seems to hold for genomes (and particularly plasmids), supporting the genome streamlining hypothesis (4).

References:

  1. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16, 964 (2015). doi: 10.1186/s12864-015-2153-5 [Paper link]
  2. Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ: BacMet: Antibacterial Biocide and Metal Resistance Genes Database. Nucleic Acids Research, 42, D1, D737-D743 (2014). doi: 10.1093/nar/gkt1252 [Paper link]
  3. Bengtsson-Palme J, Alm Rosenblad M, Molin M, Blomberg A: Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics, 15, 749 (2014). doi: 10.1186/1471-2164-15-749 [Paper link]
  4. Giovannoni SJ, Cameron TJ, Temperton B: Implications of streamlining theory for microbial ecology. ISME Journal, 8, 1553-1565 (2014).

I am very happy to announce that our paper on the metagenomes of periphyton communities (1) have been accepted in Frontiers in Microbiology (Aquatic Microbiology section). This project has been one of my longest running, as it started as my master thesis in 2010 and has gone through several metamorphoses before hitting its final form.

Briefly, our main findings are that:

  1. Periphyton communities harbor an extraordinary diversity of organisms, including viruses, bacteria, algae, fungi, protozoans and metazoans
  2. Bacteria are by far the most abundant
  3. We find functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances
  4. Genes encoding enzymes that participate in anaerobic pathways are found in the biofilms suggesting that anaerobic or low-oxygen micro-zones within the biofilms exist

Most of this work has been carried out by my colleague Kemal Sanli, who have been doing a wonderful job pulling this together, with the help of Henrik Nilsson and Martin Eriksson. It also deserves to be noted that this work was the starting point for the Metaxa software (2,3), which recently reached version 2.1.1.

References

  1. Sanli K, Bengtsson-Palme J, Nilsson RH, Kristiansson E, Alm Rosenblad M, Blanck H, Eriksson KM: Metagenomic sequencing of marine periphyton: Taxonomic and functional insights into biofilm communities. Frontiers in Microbiology, 6, 1192 (2015). doi: 10.3389/fmicb.2015.01192 [Paper link]
  2. Bengtsson J, Eriksson KM, Hartmann M, Wang Z, Shenoy BD, Grelet G, Abarenkov K, Petri A, Alm Rosenblad M, Nilsson RH: Metaxa: A software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie van Leeuwenhoek, 100, 3, 471-475 (2011). doi:10.1007/s10482-011-9598-6. [Paper link]
  3. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Molecular Ecology Resources, 15, 6, 1403–1414 (2015). doi: 10.1111/1755-0998.12399 [Paper link]

I have had the pleasure to be chosen as a speaker for next week’s (ten days from now) Swedish Bioinformatics Workshop. My talk is entitled “Turn up the signal – wipe out the noise: Gaining insights into bacterial community functions using metagenomic data“, and will largely deal with the same questions as my talk on EDAR3 in May this year. As then, the talk will highlight the some particular pitfalls related to interpretation of data, and exemplify how flawed analysis practices can result in misleading conclusions regarding community function, and use examples from our studies of environments subjected to pharmaceutical pollution in India, the effect of travel on the human resistome, and modern municipal wastewater treatment processes.

The talk will take place on Thursday, September 24, 2015 at 16:30. The full program for the conference can be found here. And also, if you want a sneak peak of the talk, you can drop by on Friday 13.00 at Chemistry and Molecular Biology, where I will give a seminar on the same topic in the Monthly Bioinformatic Practical Meetings series.

Late last year, an opinion paper by José Martínez, Teresa Coque and Fernando Baquero was published in Nature Reviews Microbiology (1). In this paper, the authors present a system – resistance readiness conditions (RESCon) – for ranking the risks associated with the detection of antibiotic resistance genes. They also outline the obstacles associated with determining risks presented by antibiotic resistance genes in environmental microbial communities in terms of their potential to transfer to human pathogens. Generally, I am very positive about this paper, which I think is a must-read for anyone who works with antibiotic resistance genes in metagenomes, regardless of it they stem from the human gut or the external environment.

There is, however, one very important aspect that struck me and many other members of our research group as curious: the proposed system assign antibiotic resistance genes already present on mobile genetic elements in human pathogens to the highest risk category (RESCon 1), while resistance genes encoding novel resistance mechanisms not yet been found on mobile elements in a pathogen are considered to be part of lower risk categories. We believe that this system will overestimate the risks associated with well-known resistance factors that are already circulating among human pathogens and under-appreciate the potentially disastrous consequences that the transfer of previously unknown resistance determinants from the environmental resistome could have (exemplified by the rapid clinical spread of the NDM-1 metallo-beta-lactamase gene (2,3)).

With this in mind me and Joakim Larsson wrote a response letter to Nature Reviews Microbiology that went online last monday (4), together with the authors’ reply to us (5). (I strongly suggest that you read the entire original paper (1) before you read the reply (5) to our response letter (4), since Martinez et al. changes the scope slightly from the original paper in their response letter, and these clarifications may (or may not) have been in response to our arguments.)

In our response, we also stress that the abundances of resistance genes, and not only their presence, should be accounted for when estimating risks (although that last point might have been slightly obscured due to the very low word limit). In other words, we think that identifying environmental hotspots for antibiotic resistance genes, where novel resistance genes could be selected for (6,7,8), is of great importance for mitigating public health risks related to environmental antibiotic resistance. Please read our full thoughts on the matter in Nature Reviews Microbiology.

Similar issues will be touched upon in my talk at the EDAR2015 conference later in May. Hope to see you there!

References

  1. Martinez JL, Coque TM, Baquero F: What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 2015, 13:116–123.
  2. Kumarasamy KK, et al.: Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010, 10:597–602.
  3. Walsh TR, Weeks J, Livermore DM, Toleman MA: Dissemination of NDM‐1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 2011, 11:355–362.
  4. Bengtsson-Palme J, Larsson DGJ: Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 2015, Advance online publication. doi:10.1038/nrmicro3399‐c1
  5. Martinez JL, Coque TM, Baquero F: Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol 2015, Advance online publication. doi:10.1038/nrmicro3399‐c2
  6. Kristiansson E, et al.: Pyrosequencing of antibiotic‐contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 2011, 6:e17038.
  7. Bengtsson‐Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 2014, 5:648.
  8. Marathe NP, et al.: A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi‐drug resistant integron‐bearing bacteria. PLoS ONE 2013, 8:e77310.