Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg

Browsing Posts tagged Health

Sorry for the late notice, but if you have half an hour to spare later today I will discuss our findings on resistance genes in Beijing air on a webinar organised by Healthcare Without Harm on “The (un)recognised pathways of AMR: Air pollution and food“. Tune in a few minutes before 16.00 CEST!

I will give a short talk on our findings related to antibiotic resistance associated with pharmaceutical production facilities in India at a one-hour webinar arranged by Healthcare Without Harm, taking place on Thursday, November 3rd, 10.00 CET. The webinar will discuss “hot-spot” environments in which antimicrobial resistance can emerge, such as areas in which there are poor pharmaceutical manufacturing practices, where expired or unused drugs are disposed of in an inappropriate way (i.e. by flushing them down the toilet or sink, or disposing them in household rubbish), and areas in which pharmaceuticals are used for aquaculture or agriculture. This is an important aspect of the resistance problem, but to date most of the actions taken to tackle the spread of AMR don’t take into account this aspect of antimicrobials released into the environment. The webinar is co-organised by HCWH Europe and HCWH Asia, and aims to raise awareness about the issue of AMR and its environmental impact. It features, apart from myself, Lucas Wiarda (Global Marketing Director & Head of Sustainable Antibiotics Program at DSM Sinochem Pharmaceuticals) and Sister Mercilyn Jabel (Pharmacist at Saint Paul Hospital Cavite, Philippines).

Sign up here to learn about:

  • Antibiotic pollution and waste
  • Recent findings from India regarding antibiotic discharges in rivers from manufacturers and new mechanisms by which resistance spreads in the environment
  • Sustainable antibiotics – how to support the proper and effective use of antibiotics and their responsible production
  • How the pharmaceutical industry is addressing the environmental pollution that leads to AMR
  • The best practices in managing infectious waste at hospital level

In a recent paper in Nature, a completely new antibiotic – teixobactin – is described (1). The really cool thing about this antibiotic is that it was discovered in a screen of uncultured bacteria, grown using new technology that enable controlled growth of single colonies in situ. I really like this idea, and I think the prospect of a novel antibiotic using a previously unexploited mechanism is super-promising, particularly in the light of alarming resistance development in clinically important pathogens (2,3). What really annoys me about the paper is the claim (already in the abstract) that since “we did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin (…) the properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.” To me, this sounds pretty much like a bogus statement; in essence telling me that we apparently have not learned anything from the 70 years of antibiotics usage and resistance development. After working with antibiotic resistance a couple of years, particularly from the environmental perspective, I have a very disturbing feeling that there is already resistance mechanisms against teixobactin waiting out in the wild (4,5). Pretending that lack of mutation-associated resistance development means that there could not be resistance development did not help vancomycin (6,7), and we now see VRE (Vancomycin Resistant Enterococcus) showing up as a major problem in clinics. The “avoid development of resistance” claim is downright irresponsible, and the cynic in me cannot help to think that NovoBiotic Pharmaceuticals (the affiliation of almost half of the authors) has a monetary finger in this jar. In the end, time will tell how “resistance-resilient” teixobactin is and how well we can handle the gift of a novel antibiotic.

  1. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K: A new antibiotic kills pathogens without detectable resistance. Nature (2015). doi:10.1038/nature14098
  2. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, 57: 704–710 (2013).
  3. French GL: The continuing crisis in antibiotic resistance. Int J Antimicrob Agents, 36 Suppl 3:S3–7 (2010).
  4. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5: 648 (2014).
  5. Larsson DGJ: Antibiotics in the environment. Ups J Med Sci, 119: 108–112 (2014).
  6. Wright GD: Mechanisms of resistance to antibiotics. Curr Opin Chem Biol, 7:563–569 (2003).
  7. Werner G, Strommenger B, Witte W: Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol, 3: 547–562 (2008).

It seriously worries me that a number of indications recently have pointed to that the heavy use of antibiotics does not only drive antibiotic resistance development, but also the development towards more virulent and aggressive strains of pathogenic bacteria. First, the genome sequencing of the E. coli strain that caused the EHEC outbreak in Germany in May revealed not only antibiotic resistance genes, but also is also able to make Shiga toxin, which is causes the severe diarrhoea and kidney damage related to the haemolytic uremic syndrome (HUS). The genes encoding the Shiga toxin are not originally bacterial genes, but instead seem to originate from phages. When E. coli gets infected with a Shiga toxin-producing phage, it becomes a human pathogen [1]. David Acheson, managing director for food safety at consulting firm Leavitt Partners, says that exposure to antibiotics might be enhancing the spread of Shiga toxin-producing phage. Some antibiotics triggers what is referred to as the SOS response, which induces the phage to start replicating. The replication of the phage causes the bacteria to burst, releasing the phages, and with them the toxin [1].

Second, there is apparently an ongoing outbreak of scarlet fever in Hong Kong. Kwok-Yung Yuen, microbiologist at the University of Hong Kong, has analyzed the draft sequence of the genome, and suggests that the bacteria acquired greater virulence and drug resistance by picking up one or more genes from bacteria in the human oral and urogenital tracts. He believes that the overuse of antibiotics is driving the emergence of drug resistance in these bacteria [2].

Now, both of these cases are just indications, but if they are true that would be an alarming development, where the use of antibiotics promotes the spread not only of resistance genes, impairing our ability to treat bacterial infections, but also the development of far more virulent and aggressive strains. Combining increasing untreatability with increasing aggressiveness seems to me like the ultimate weapon against our relatively high standards of treatment of common infections. Good thing hand hygiene still seems to help [3].


  1. Phage on the rampage (http://www.nature.com/news/2011/110609/full/news.2011.360.html), Published online 9 June 2011, Nature, doi:10.1038/news.2011.360
  2. Mutated Bacteria Drives Scarlet Fever Outbreak (http://news.sciencemag.org/scienceinsider/2011/06/mutated-bacteria-drives-scarlet.html?etoc&elq=cd94aa347dca45b3a82f144b8213e82b), Published online 27 June 2011.
  3. Luby SP, Halder AK, Huda T, Unicomb L, Johnston RB (2011) The Effect of Handwashing at Recommended Times with Water Alone and With Soap on Child Diarrhea in Rural Bangladesh: An Observational Study. PLoS Med 8(6): e1001052. doi:10.1371/journal.pmed.1001052 (http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001052)