Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg | Wisconsin Institute for Discovery

Browsing Posts tagged Usearch

I am very happy to announce that a first public beta version of Metaxa2 version 2.2 has been released today! This new version brings two big and a number of small improvements to the Metaxa2 software (1). The first major addition is the introduction of the Metaxa2 Database Builder, which allows the user to create custom databases for virtually any genetic barcoding region. The second addition, which is related to the first, is that the classifier has been rewritten to have a more solid mathematical foundation. I have been promising that these updates were coming “soon” for one and a half years, but finally the end-product is good enough to see some real world testing. Bear in mind though that this is still a beta version that could contain obscure bugs. Here follows a list of new features (with further elaboration on a few below):

  • The Metaxa2 Database Builder
  • Support for additional barcoding genes, virtually any genetic region can now be used for taxonomic classification in Metaxa2
  • The Metaxa2 database repository, which can be accessed through the new metaxa2_install_database tool
  • Improved classification scoring model for better clarity and sensitivity
  • A bundled COI database for athropods, showing off the capabilities of the database builder
  • Support for compressed input files (gzip, zip, bzip, dsrc)
  • Support for auto-detection of database locations
  • Added output of probable taxonomic origin for sequences with reliability scores at each rank, made possible by the updated classifier
  • Added the -x option for running only the extraction without the classification step
  • Improved memory handling for very large rRNA datasets in the classifier (millions of sequences)
  • This update also fixes a bug in the metaxa2_rf tool that could cause bias in very skewed datasets with small numbers of taxa

The new version of Metaxa2 can be downloaded here, and for those interested I will spend the rest of this post outlining the Metaxa2 Database Builder. The information below is also available in a slightly extended version in the software manual.

The major enhancement in Metaxa2 version 2.2 is the ability to use custom databases for classification. This means that the user can now make their own database for their own barcoding region of choice, or download additional databases from the Metaxa2 Database Repository. The selection of other databases is made through the “-g” option already existing in Metaxa2. As part of these changes, we have also updated the classification scoring model for better stringency and sensitivity across multiple databases and different genes. The old scoring system can still be used by specifying the –scoring_model option to “old”.

There are two different main operating modes of the Metaxa2 Database Builder, as well as a hybrid mode combining the features of the two other modes. The divergent and conserved modes work in almost completely different ways and deal with two different types of barcoding regions. The divergent mode is designed to deal with barcoding regions that exhibit fairly large variation between taxa within the same taxonomic domain. Such regions include, e.g., the eukaryotic ITS region, or the trnL gene used for plant barcoding. In the other mode – the conserved mode – a highly conserved barcoding region is expected (at least within the different taxonomic domains). Genes that fall into this category would be, e.g., the 16S SSU rRNA, and the bacterial rpoB gene. This option would most likely also be suitable for barcoding within certain groups of e.g. plants, where similarity of the barcoding regions can be expected to be high. There is also a third mode – the hybrid mode – that incorporates features of both the other. The hybrid mode is more experimental in nature, but could be useful in situations where both the other modes perform poorer than desired.

In the divergent (default) mode, the database builder will start by clustering the input sequences at 20% identity using USEARCH (2). All clusters generated from this process are then individually aligned using MAFFT (3). Those alignments are split into two regions, which are used to build two hidden Markov models for each cluster of sequences. These models will be less precise, but more sensitive than those generated in the conserved mode. In the divergent mode, the database builder will attempt to extract full-length sequences from the input data, but this may be less successful than in the conserved mode.

In the conserved mode, on the other hand, the database builder will first extract the barcoding region from the input sequences using models built from a reference sequence provided (see above) and the Metaxa2 extractor (1). It will then align all the extracted sequences using MAFFT and determine the conservation of each position in the alignment. When the criteria for degree of conservation are met, all conserved regions are extracted individually and are then re-aligned separately using MAFFT. The re-aligned sequences are used to build hidden Markov models representing the conserved regions with HMMER (4). In this mode, the classification database will only consist of the extracted full-length sequences.

In the hybrid mode, finally, the database builder will cluster the input sequences at 20% identity using USEARCH, and then proceed with the conserved mode approach on each cluster separately .

The actual taxonomic classification in Metaxa2 is done using a sequence database. It was shown in the original Metaxa2 paper that replacing the built-in database with a generic non-processed one was detrimental to performance in terms of accuracy (1). In the database builder, we have tried to incorporate some of the aspects of the manual database curation we did for the built-in database that can be automated. By default, all these filtration steps are turned off, but enabling them might drastically increase the accuracy of classifications based on the database.

To assess the accuracy of the constructed database, the Metaxa2 Database Builder allows for testing the detection ability and classification accuracy of the constructed database. This is done by sub-dividing the database sequences into subsets and rebuilding the database using a smaller (by default 90%), randomly selected, set of the sequence data (5). The remaining sequences (10% by default) are then classified using Metaxa2 with the subset database. The number of detections, and the numbers of correctly or incorrectly classified entries are recorded and averaged over a number of iterations (10 by default). This allows for obtaining a picture of the lower end of the accuracy of the database. However, since the evaluation only uses a subset of all sequences included in the full database, the performance of the full database actually constructed is likely to be slightly better. The evaluation can be turned on using the “–evaluate T” option.

Metaxa2 2.2 also introduces the database repository, from which the user can download additional databases for Metaxa2. To download new databases from the repository, the metaxa2_install_database command is used. This is a simple piece of software but requires internet access to function.


  1. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399 [Paper link]
  2. Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461 (2010).
  3. Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780 (2013).
  4. Eddy SR: Accelerated profile HMM searches. PLoS Computational Biology, 7, e1002195 (2011).
  5. Richardson RT, Bengtsson-Palme J, Johnson RM: Evaluating and Optimizing the Performance of Software Commonly Used for the Taxonomic Classification of DNA Sequence Data. Molecular Ecology Resources, 17, 4, 760–769 (2017). doi: 10.1111/1755-0998.12628

I am very happy to announce that Metaxa2 version 2.1 has been released today. This new version brings a lot of important improvements to the Metaxa2 software (1), in particular by the introduction of the Metaxa2 Diversity Tools. This is the list of new features (further elaboration follows below):

  • The Metaxa2 Diversity Tools:
    • metaxa2_dc – a tool for collecting several .taxonomy.txt output files into one large abundance matrix, suitable for analysis in, e.g., R
    • metaxa2_rf – generates rarefaction curves based on the .taxonomy.txt output
    • metaxa2_si – species inference based on guessing species data from the other species present in the .taxonomy.txt output file
    • metaxa2_uc – a tool for determining if the community composition of a sample is significantly different from others through resampling analysis
  • Added a new detection mode for detection of multiple rRNA in the same sequence, e.g. a genome
  • Added the --reference option to improve the use of Metaxa2 as a tool to sort out host rRNA sequences from a dataset
  • Added the --split_pairs option causing Metaxa2 to output paired-end sequences into two separate files, which is nice for further analysis of rRNA reads
  • The default setting for the --align option has been changed to ‘none
  • Automatic detection of which BLAST package that is installed
  • Fixed a bug causing the last read of paired-end FASTA input to be ignored
  • Fixed an occasionally occurring BLAST+ related warning message
  • Fixed a bug that could cause the classifier to crash on highly divergent BLAST matches

The new version of Metaxa2 can be downloaded here, and for those interested I will spend the rest of this post outlining the new features.

Metaxa2 Diversity Tools
One often requested feature of Metaxa2 is the ability to further make simple analysis from the data after classification. The Metaxa2 Diversity Tools included in Metaxa2 2.1 is a seed for such an effort (although not close to a full-fledge community analysis package compared to QIIME (2) or Mothur (3)). The set currently consist of four tools

The Metaxa2 Data Collector (metaxa2_dc) is the simplest of them (but probably the most requested), designed to merge the output of several *.level_X.txt files from the Metaxa2 Taxonomic Traversal Tool into one large abundance matrix, suitable for further analysis in, for example, R. The Metaxa2 Species Inference tool (metaxa2_si) can be used to further infer taxon information on, for example, the species level at a lower reliability than what would be permitted by the Metaxa2 classifier, using a complementary algorithm. The idea is that is if only a single species is present in, e.g., a family and a read is assigned to this family, but not classified to the species level, that sequence will be inferred to the same species as the other reads, given that it has more than 97% sequence identity to its best reference match. This can be useful if the user really needs species or genus classifications but many organisms in the studied species group have similar rRNA sequences, making it hard for the Metaxa2 classifier to classify sequences to the species level.

The Metaxa2 Rarefaction analysis tool (metaxa2_rf) performs a rarefaction analysis based on the output from the Metaxa2 classifier, taking into account also the unclassified portion of rRNAs. The Metaxa2 Uniqueness of Community analyzer (metaxa2_uc), finally, allows analysis of whether the community composition of two or more samples or groups is significantly different. Using resampling of the community data, the null hypothesis that the taxonomic content of two communities is drawn from the same set of taxa (given certain abundances) is tested. All these tools are further described in the manual.

The genome mode
Metaxa2 has long been said not to be useful for predicting rRNA in longer sequences, such as full genomes or chromosomes, since it has traditionally only looked for a single rRNA hit. With Metaxa2 2.1, it is now possible to use Metaxa2 on longer sequences to detect multiple rRNA occurrences. To do this, you need to change the operating mode using the new --mode option to either ‘auto‘ or ‘genome‘. The auto mode will treat sequences longer than 2500 bp as “genome” sequences and look for multiple matches in these.

The reference mode
Another feature request that has been addressed in the new Metaxa2 version is the ability to filter out certain sequences from the data set. For example, you may want to exclude all rRNA sequences that are derived from to host organism, but keep the analysis of all other rRNA reads. This is now possible by supplying a file of reference rRNA sequences to exclude in FASTA format to the --reference option.

Experimental Usearch support
Finally, we have toyed around with support for Usearch (4) instead of BLAST (5) as the search algorithm for the classification step. However, this is far from fine-tuned and it is included as an experimental feature that you may use on your own risk! We recommend that you not use it for classification of data for publication yet. However, we are interested in how this works for you, so if you like you may test to run the Usearch algorithm in parallel with your BLAST-based analysis and compare the results and send me your input on how it works. You can read more about using Usearch at the end of the Metaxa2 manual.


  1. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399 [Paper link]
  2. Caporaso JG, Kuczynski J, Stombaugh J et al.: QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336 (2010).
  3. Schloss PD, Westcott SL, Ryabin T et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541 (2009).
  4. Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461 (2010).
  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–3402 (1997).