
FARAO – Flexible All-Round Annotation Organizer –

Documentation

This is a guide on how to install and use FARAO. The software is written in Perl, is aimed for
Unix-like platforms, and should work on nearly all Linux-based systems, as well as MacOS X.

Contents of this manual
1. Detailed installation instructions

2. Usage and commands
i. setup_annotation_db

ii. add_annotation
iii. get_annotations
iv. remove_annotations
v. add_mapped_reads

vi. get_coverage
vii. remove_mapped_reads

viii. estimate_coverage
ix. annotation_db_to_mysql
x. coverage_db_to_mysql

3. FARAO parsers

4. Database mapping files and custom input to FARAO parsers

5. Output

6. Custom FARAO parsers

7. MySQL compatibility

8. License information

1. Detailed installation instructions
Perl needs to be installed on the computer. Most Unix-based systems including Linux and
MacOS X have Perl pre-installed. You can check this by opening a command line terminal
and type “perl -v”. In case Perl is not installed, you have to download (http://www.perl.org)
and compile the program.

Go to http://microbiology.se/software/FARAO in order to download the FARAO package.
Download it to your preferred directory. Unpack the downloaded tarball with “unzip
FARAO_1.0b.zip”. A new directory will be created. Enter the directory, and type “chmod -R
755 *”. Then type copy all the files into your preferred bin-directory, e.g. “cp -r *
/home/user/bin”. You may need superuser privileges to complete this action. If FARAO is
successfully installed you should see its help message when typing the command
“add_annotation --help”.

2. Usage and commands

setup_annotation_db

Usage: setup_annotation_db <New annotation file> <Input file in FASTA format>

This tool sets up a database file to add annotations to. The command takes two arguments,
the name of the new annotation database file, and a file containing sequences in FASTA
format that will be associated with the database. This command is the same for setting up both
annotation databases and read coverage databases (see below). Note that these database files
must be kept separately – it is not possible to add both annotation and coverage data to the
same database file.

add_annotation

Usage: add_annotation -a <File to add annotations to> -f <Format of input
file> -i <Input file> -t <Annotation type> [-m <Database mapping file
(optional)>]

This command adds annotations based on an output file (usually from some other
bioinformatics tool) to the annotation database specified. The command requires four
arguments; the name of the annotation database file [-a], the format of the input file (which
must be compatible with a FARAO parser, see below) [-f], the path to the input file [-i], and
the “annotation type” handle – a free-text string which will later be used to refer to this
specific set of annotations in the database [-t]. In addition, a mapping of sequence IDs to e.g.
gene names can be specified using the “-m” option. The mapping file format is described in
another section of the FARAO documentation.

Main options:

-i {file} File containing annotations to be added. Required option.

-a {file} Annotation database file setup using setup_annotation_db. Required
option.

-f {string} Format of the annotation file to be added (use --formats for a complete
list of available input formats). Required option.

-t {string}. Type of prediction to be added. Free text. Will be used when querying
the database for information. Can for example be the name of the
reference database. Required option.

-m {file} Mapping file containing sequence IDs and strings that will be assigned
to each ID.

Parser options:

-p {string} Additional options to be supplied to the parser. Use the --formats option
to get information of which parsers that utilize this option.

--strange_ID_parsing If this option is supplied, the software will try to interpret strange FASTA
IDs more elaborately.

Information options:

-h Displays basic usage help.

--help Displays the help message, complete with all options.

--formats Displays a list of available input formats and some brief information on
those.

--license Displays licensing information.

get_annotations

Usage: get_annotations -i <Annotation file> -o <Output type>

This command outputs annotations stored in the annotation database specified, for all
sequences matching the filtration criteria. The command requires one argument; the name of
the annotation database file [-i]. There are several filtration options, as well as options for
creating PNG and EPS image representations of the selected database sequences.

Main options:

-i {file} Annotation database file. Required option.

Filtration options:

-s {sequence ID or file} A specific sequence ID, or a file containing sequence IDs, to look for
among the annotated entries. If not specified, output will be created for
all entries fulfilling the other filtration options.

-p {string} Output only annotations of this type. Several types can be specified,
separated by comma. Default is to output all annotations for each
sequences.

-e {value} E-value cutoff for a sequence to be included in the output. Default is no
cutoff.

-c {value} Identity cutoff for a sequence to be included in the output (in percent).
Default is 0.0

-b {T or F} Output only the best match at a given position in the database
sequence. On (T) by default.

-m {value} Minimal length of the database sequence to be included in the output.
Default = 0

-n {value} Minimal number of matches to a database sequence passing the filters
to be included in the output. Default = 1

-l {value} Minimal length of the match between the database sequence and the
annotated feature. Default = 0

-r {start-stop} Region to output of the sequence. Default is full-length.

--overlap {value} Maximum allowed overlap to another feature before only the best
feature is shown in the output. Default = 50

--matches {string} Output database sequences that matches this specific sequence ID.

--select {string} Only output sequences that match the specified string (for example a
gene or query ID).

--select_type {string} Only output sequences that match this type.

--select_method {AND,
OR, XOR, NOT}

Select logical method for selecting using multiple strings. Possible
methods are AND, OR, XOR and NOT. Default = AND.

--n_types {value} Minimal number of types a database sequence must have annotations
for to produce output. Default = 1

Output options:

-o list Outputs a list of matches satisfying the selection options (default).

-o gff Outputs a list of matches satisfying the selection options, in GFF format.

-o view Outputs a semi-graphical display (in text format) of matches satisfying
the selection options.

-o png Output graphical representations of matches satisfying the selection
options to a PNG files in the directory specified using the --images
option. Will also output a list of matches (as for the “-o list” option).

-o eps Output graphical representations of matches satisfying the selection
options to an EPS files in the directory specified using the --images
option. Will also output a list of matches (as for the “-o list” option).

-o ids Output a list of database sequence IDs satisfying the selection options.

-o db Output a new annotation database in the FARAO format of contigs
satisfying the selection options.

-a {list of attributes} A list of attributes to output for matches (comma-separated).
Possible attributes: number,query,length,gc-
content,start,end,accession,description,type,identity,evalue,overlap
Short forms: n,q,len,gc,start,end,acc,desc,type,id,eval,over

Default attributes:
number,query,length,start,end,description,identity,evalue

--scale {value} Scale of the output graph. Default = 0

--separate_types {T or
F}

Output matches of different types on different lines. Only valid for the
graphical output formats. On (T) by default.

Image options:
Note that these options only apply to PNG and EPS files.

--images {directory} A directory to save PNG or EPS files in. If this directory does not exist, it is
created.

--colors {string} Allows specification of colors for any annotated property. Format:
attribute:value:color;attribute:value:color
Patterns can be used for values. Colors either in text or RGB (x,x,x)
format. All attributes and values not specified will be set to black
(RGB:0,0,0).
Available colors specified as text: black, grey, red, green, blue, yellow,
orange, violet, moss, cyan.
Example: description:MobA:red;description:GyrA:blue;type:NCBI:cyan

--type_colors {string} Allows specification of colors for different annotation types (as specified
by the -p option). Essentially, this option is a subset of the --colors
options specific for types. Format:
type:color;type:color
Example: Pfam:red;NR:green;ORF;grey
For colors, see --colors option

--font {string} Sets the font (EPS output only). Default = Helvetica.

--fontsize {string} Sets the font size (EPS output only). Default = 9

--max_char The maximum number of characters that will be outputted for each
annotation.

--circular {T or F} Creates circular (plasmid-like) plots. Works only for EPS output format.
Off (F) by default.

--radius {value} Radius of circle (for circular output). Default = 500

--margin {value} Margin outside of circle (for circular output). Default = 100

--positions {T or F} Shows position numbers. Can only be turned off for the EPS output
format. On (T) by default.

--annotations {T or F} Shows annotation texts. On (T) by default.

--annotate {string} Output one annotation per entry of a certain type from of a list of other
types (comma-separated). Example:

ORF:PFAM,UNIPROT,GENBANK

This will annotate all entries of types ORF with the information from
matches in PFAM, UNIPROT and GENBANK, in that order of preference.

Information options:
-h Displays basic usage help.

--help Displays the help message, complete with all options.

--license Displays licensing information.

remove_annotations

Usage: remove_annotation <File to remove annotations from> <Annotation type>
<Keyword to contain for removal (optional)>

This tool removes annotation entries from the annotation database. The command takes two
required arguments, the name of the annotation database file, and a type of annotations to be
removed. Optionally, the user can also specify a keyword that annotations must contain to be
removed from the database, to enable more specific removal of certain entries.

add_mapped_reads

Usage: add_mapped_reads -a <File to add reads counts to> -f <Format of input
file> -i <Input file> -t <Library>

This command adds coverage information based on an output file (usually from some other
bioinformatics tool) to the coverage database specified. The command requires four
arguments; the name of the coverage database file [-a], the format of the input file (which
must be compatible with a FARAO parser, see below) [-f], the path to the input file [-i], and
the library handle – a free-text string which will later be used to refer to this specific library of
reads in the database [-t].

Main options:

-i {file} File containing output from a read mapper. Required option.

-a {file} Coverage database file for mapped reads setup using
setup_annotation_db. Required option.

-f {string} Format of the annotation file to be added (use --formats for a complete
list of available input formats). Required option.

-t {string}. Name of the library to be added. Free text. Will be used when querying
the database for information. Required option.

Filtration options:

-c {integer} Minimum percent identity of a read to be added to the mapped reads
database. Default = 0

-l {integer} Minimum length of a read to be added to the mapped reads database.
Default = 0

Parser options:

-p {string} Additional options to be supplied to the parser. Use the --formats option
to get information of which parsers that utilize this option.

Information options:

-h Displays basic usage help.

--help Displays the help message, complete with all options.

--formats Displays a list of available input formats and some brief information on
those.

--license Displays licensing information.

get_coverage

Usage: get_coverage -i <Read coverage file> -o <Output type>

This command outputs read coverage data stored in the coverage database specified, for all
sequences matching the filtration criteria. The command requires one argument; the name of
the coverage database file [-i]. There are several filtration options, as well as options for
creating PNG and EPS image representations of the selected database sequences.

Main options:

-i {file} Read coverage database file. Required option.

Filtration options:

-s {sequence ID or file} A specific sequence ID, or a file containing sequence IDs, to look for
among the entries in the database. If not specified, output will be
created for all entries fulfilling the other filtration options.

-l {string}
--lib {string}

Output only coverage for this library (several can be comma-separated).
Default is for all libraries in the database.

-c {value} Coverage cutoff for a sequence to be included in the output (in
coverage per base pair. Default is 0.0

-p {value} Percent of length covered for a sequence to be included in the output.
Default is 0.0

-m {value} Minimal length of the database sequence to be included in the output.
Default = 0

-n {value} Minimal number of mapped reads to a query sequence to produce
output. Default = 1

-r {start-stop} Region to output of the sequence. Default is full-length.

--matches {string} Output database sequences that matches this specific sequence ID.

--select {string} Only output sequences that match the specified string (for example a
library or query ID).

--uneven {value} Only output sequences with a max coverage <value> times larger than
the average coverage (e.g. 2). Not used by default.

--n_lib {value} Minimal number of libraries a database entries must have coverage in to
produce output. Default = 1

Output options:

-o list Outputs a list of matches satisfying the selection options (default).

-o table Outputs a table of counts satisfying the selection options across
different libraries (useable for analysis in e.g. edgeR)

-o view Outputs a semi-graphical display (in text format) of matches satisfying
the selection options.

-o png Output graphical representations of matches satisfying the selection
options to a PNG files in the directory specified using the --images
option. Will also output a list of matches (as for the “-o list” option).

-o eps Output graphical representations of matches satisfying the selection
options to an EPS files in the directory specified using the --images
option. Will also output a list of matches (as for the “-o list” option).

-o db Output a new coverage database in the FARAO format of contigs
satisfying the selection options.

--scale {value} Scale of the output graph. Default = 0

--table {string} The type of values to be outputted in the table (if option '-o table' is
used). Can be: total, mean, max, coverage, length. Default = total.

Image options:
Note that these options only apply to PNG and EPS files.

--images {directory} A directory to save PNG or EPS files in. If this directory does not exist, it is
created.

--lib_colors {string} Allows specification of colors for different libraries. Format:
library:color;libarary:color
Example: LIBRARY_A:red;LIBRARY_B:green;LIBRARY_C;grey
Colors can be specified as text or comma-seprated RGB values (such as
0,0,0 for black). Available colors specified as text: black, grey, red, green,
blue, yellow, orange, violet, moss, cyan.

--yscale {value} Scale of the Y-axis in the output graph. Default = 1

--ymax {value} Maximum length of Y-axis in the output graph. This option overrides
the --yscale parameter. A value of zero means that there is no specified
max value for the Y-axis length. Default = 0

Information options:
-h Displays basic usage help.

--help Displays the help message, complete with all options.

--license Displays licensing information.

remove_mapped_reads

Usage: remove_mapped_reads <File to remove read coverage information from>
<Library>

This tool removes coverage information for certain libraries from the coverage database. The
command takes two required arguments, the name of the read coverage database file, and the
name of the library to be removed.

estimate_coverage

Usage: estimate_coverage -i <Read coverage database> -a <get_annotations
output file>

This command outputs read coverage data stored in the coverage database specified, for
specific features specified in a supplied output file from get_annotations. The command
requires two arguments; the name of the coverage database file [-i] and the output file from
get_annotations to read features from [-a]. Note that the output file from get_annotations
must be created using the “-a all” option for this command to work properly! It is also worth
mentioning that running estimate_coverage can take very long time for large datasets.

Main options:

-i {file} Read coverage database file. Required option.

-a {file} A file containing output from get_annotations (with option '-a all') of
features to estimate coverage for. Required option.

Filtration options:

-l {string}

--lib {string}

Output only coverage for this library (several can be comma-separated).
Default is for all libraries in the database.

-m {string} Method for estimating coverage, can be: mean, median, max, min,
bases. Default is mean.

-r {start-stop} Region to output of the sequence. Default is full-length.

-c {integer or interval} Number of bases at start and end of the contig to ignore when
estimating coverage.

If an integer, that number of bases will be ignored at each end, and if
the contig is shorter than 2x the integer, the software will return N/A.

If an interval, the lower number will be used as the integer above, but if
the length of the contig permits it, the number of bases ignored will be
increased up to the higher number of the interval.

Default is 50-100

-d Use description rather than feature name.

Information options:
-h Displays basic usage help.

--help Displays the help message, complete with all options.

--license Displays licensing information.

annotation_db_to_mysql

Usage: annotation_db_to_mysql -a <Database file to convert> -d <MySQL
database> -u <MySQL username> -o <New database file> [-p <MySQL password>]

This command converts a specified annotation database in FARAO format to MySQL
format. It requires four arguments; the name of the annotation database file [-a], the address
to the MySQL database (for example “farao:localhost” if the MySQL server is running on the
same computer) [-d], the MySQL user name [-u] and the name of the new database file to be
created [-o]. Usually, a MySQL password must also be supplied using the “-p” option. The
conversion process requires a MySQL server to be running, and the DBD and DBI Perl
libraries to be installed.

Main options:

-a {file} Annotation database file setup using setup_annotation_db to convert.
Required option.

-d {string} Address to the MySQL database to add the converted database to. This
must include the database name, the host, and optionally the port. For
example: 'farao:localhost'. Required option.

-t {string}. MySQL table name to use for the database. The default is the same as
the output file (-o option).

-u {string} MySQL username. Required option.

-p {string} MySQL password corresponding to the given username. Can be empty.

-o {file} New database file to write to. Required option.

Information options:

-h Displays basic usage help.

--help Displays the help message, complete with all options.

--license Displays licensing information.

coverage_db_to_mysql

Usage: coverage_db_to_mysql -a <Database file to convert> -d <MySQL database>
-u <MySQL username> -o <New database file> [-p <MySQL password>]

This command converts a specified coverage database in FARAO format to MySQL format.
It requires four arguments; the name of the coverage database file [-a], the address to the
MySQL database (for example “farao:localhost” if the MySQL server is running on the same
computer) [-d], the MySQL user name [-u] and the name of the new database file to be
created [-o]. Usually, a MySQL password must also be supplied using the “-p” option. The
conversion process requires a MySQL server to be running, and the DBD and DBI Perl
libraries to be installed.

Main options:

-a {file} Coverage database file setup using setup_annotation_db to convert.
Required option.

-d {string} Address to the MySQL database to add the converted database to. This
must include the database name, the host, and optionally the port. For
example: 'farao:localhost'. Required option.

-t {string}. MySQL table name to use for the database. The default is the same as
the output file (-o option).

-u {string} MySQL username. Required option.

-p {string} MySQL password corresponding to the given username. Can be empty.

-o {file} New database file to write to. Required option.

Information options:

-h Displays basic usage help.

--help Displays the help message, complete with all options.

--license Displays licensing information.

3. FARAO Parsers
FARAO comes bundled with a range of parsers for different file formats, but is also designed
to be extremely adaptable using custom parsers (see section 6 of this manual). This section will
list the parsers bundled with the main FARAO package. More parsers are available as
additional downloads from http://microbiology.se/software/farao/parsers

New parsers can be added simply by adding the parser file to the directory
“add_annotation_parsers” (for annotation parsers) or the “add_mapped_reads_parsers”
directory (for read coverage parsers). Note that these two directories must be located in the
same directory as the add_annotation and add_mapped_reads executables for FARAO to
find them.

Annotations parsers:

blastn BLAST output assumed to be in tabular format (blastall option -m 8)

blastp BLAST output assumed to be in tabular format (blastall option -m 8).
This parser assumes direct translation of sequence data into protein
sequences using transeq (part of the EMBOSS package)

blastx BLAST output assumed to be in tabular format (blastall option -m 8)

blastp-prodigal BLAST is assumed to have been run on gene predictions made by the
Prodigal software. BLAST output assumed to be in tabular format
(blastall option -m 8). This parser require the FASTA file generated by
Prodigal to be supplied as an additional argument (-p).

blat BLAT output assumed to be in tabular, BLAST-like, format.

fasta Parses sequences in the FASTA format and adds the sequence as an
annotation to the database.

gff Parser for the GFF format.

hmmsearch HMMER hmmsearch output assumed to be in normal format (NOT
tabular!). An additional option to the parser (-p) can be “description”,
which will use the descriptions of the HMM-profiles instead of the
profile names.

hmmsearch-prodigal HMMER is assumed to have been run on gene predictions made by
Prodigal. HMMER hmmsearch output assumed to be in normal format
(NOT tabular!). An additional option to the parser (-p) can be
“description”, which will use the descriptions of the HMM-profiles
instead of the profile names.

prodigal This parser assumes FASTA output from Prodigal.

rast This parser reads output from the RAST genome annotation pipeline.
Output is assumed to be in tabular format.

text Parses custom text input from a file in tabulated format:
contig_ID <tab> range <tab> text

Range should be specified as, e.g., 23-837

Read coverage parsers:

blastn BLAST output assumed to be in tabular format (blastall option -m 8).

blat BLAT output assumed to be in tabular, BLAST-like, format.

bowtie2 SAM or BAM format is assumed. Samtools is required and assumed to be
installed.

bam BAM format parser. Samtools is required and assumed to be installed.

razers3 Tabular RazerS3 output assumed

sam SAM format parser.

text Custom text input from a file in tabulated format:
contig_ID <tab> read_ID <tab> range <tab> percent_identity

Range should be specified as, e.g., 23-837. The identity column can be
omitted.

vmatch Parser for vmatch. Output assumed to be in the default vmatch output
format.

4. Database mapping files and custom input to FARAO parsers
Database mapping files

Most parsers for the add_annotations FARAO command will accept a database mapping file
through the “-m” option, allowing sequence identifiers (or e.g. HMM profile identifiers) to be
connected to gene names or descriptions. These files should be organized as plain text files in
a two-column tab-separated fashion, with the first column containing the sequence IDs of the
entries in the database and the second column containing the corresponding gene names or
descriptions. Such a database mapping file could, for example, look like this:

gi|489223532|ref|WP_003131952.1| 30S ribosomal protein S18
gi|15674171|ref|NP_268346.1| 30S ribosomal protein S18
gi|116513137|ref|YP_812044.1| 30S ribosomal protein S18
gi|125625229|ref|YP_001033712.1| 30S ribosomal protein S18

Additional columns containing more information could be added after those, but these will be
ignored by the FARAO parser. A simple way to create a database mapping file from a
FASTA file is to simply use a combination of grep, cut and sed to extract the first part of the
FASTA header, like this:

grep "^>" db.fasta | cut -f 2 -d ">" | sed "s/ /\t/" > db.mapping.txt

Custom input to FARAO parsers

Some FARAO parsers also accept or require additional arguments to be able to function
correctly. Such arguments are submitted to the parser using the “-p” option. Note that the
add_annotations and add_mapped_reads commands only take one single instance of the “-p”
argument, and thus any parser requiring several arguments need to parse those through a
string without spaces for FARAO to handle the communication between the parser and the
main command correctly.

5. Output

get_annotations
The get_annotations command can produce output in the form of a list of sequence IDs, a list
of annotations matching the given criteria in FARAO or GFF format, a text-based semi-
graphical overview, or graphical output in the PNG or EPS formats. The output formats are
briefly described below.

List output in FARAO format

The list output is the standard output format for FARAO. It consists of a tab-separated list,
with one annotation entry per line, which can be customized by the user through the “-a”
option. Possible attributes to output are: number, sequence ID, sequence length, GC-content,
start of annotated feature, end of annotated feature, feature ID, feature description, type of
annotation, percent identity, E-value, length of overlap between sequence and feature. By
default, the following attributes are written to the output table: number, query ID, length,
start, end, description, identity, E-value. If the “-a all” option is used, all fields will be written
to output. This is required for use of the estimate_coverage command. The attributes are
described below.

Attribute Description

Number The number of the annotation (recreated for each contig and for each time
the command is called).

Sequence ID The sequence ID of the annotated sequence (often referred to as the contig).

Sequence
length

The length of the annotated sequence (contig).

GC-content The GC-content of the annotated sequence (contig). [Optional]

Start The start of the annotated feature, i.e. most often the best match in that
database in this particular region of the contig.

End The end of the annotated feature.

Feature ID The identifier of the annotated feature. Often the sequence ID of the
database sequence, but this can also be other kinds of database identifiers.
[Optional]

Description A string describing the annotated feature. Sometimes this is the same as the
feature ID. If a database mapping file was used when adding information to
the annotation database, this field will contain that information, which could
e.g. be gene or species names.

Type The type of this annotation. Often corresponding to the database the match
was derived from. [Optional]

Identity The percent identity between the annotated sequence (contig) and the
database match, if applicable.

E-value The E-value of the match between the annotated sequence (contig) and the
database entry, if applicable.

Overlap length The length of the overlap between the annotated sequence (contig) and the
database feature.

List output in GFF format

The GFF format is read by several other bioinformatics packages. FARAO outputs a simple
form of the version 2 of the format. More information about this specification can be found
here: https://www.sanger.ac.uk/resources/software/gff/spec.html

GFF output is tab-separated, with the following fields: sequence_ID, match_type, region,
start, end, E-value, strand, frame, attributes. FARAO then adds attributes as follows:
ID=sequence_ID.x; Name=feature_name; Note=description; Identity=percent_identity; E-
value=e_value; GC=gc_content; Length=sequence_length. This scheme is further detailed in
the table below. This is an example of a line in a GFF-file generated by FARAO:

contig-23401000007 PLASMID region 258 314 2e-11 + 0
ID=contig_23401000007.5;Name=gi|386076436|ref|NC_017553.1|;Note=gi|386076436
|ref|NC_017553.1|;Identity=91.23;E-value=2e-11;GC=58.58;Length=850;

Attribute Description

Sequence ID The sequence ID of the annotated sequence (often referred to as the contig).

Match type The type of this annotation. Often corresponding to the database the match
was derived from.

Region Will always be “region” in GFF output from FARAO.

Start The start of the annotated feature, i.e. most often the best match in that
database in this particular region of the contig.

End The end of the annotated feature.

E-value The E-value of the match between the annotated sequence (contig) and the
database entry, if applicable.

Strand Strand on which the feature is located. “+” for the forward strand, and “-“ for
the reverse strand.

Frame Frame in which the feature occurs. Always zero in FARAO GFF output.

Attributes GFF attributes associated with the features. FARAO assigns attributes as
follows:

ID The contig ID, with “.x” appended, where x is the number of the feature
on each contig.

Name The identifier of the annotated feature (feature ID). Often the sequence
ID of the database entry.

Note A string describing the annotated feature. Sometimes this is the same
as the feature ID. If a database mapping file was used when adding
information to the annotation database, this field will contain that
information, which could e.g. be gene or species names.

Identity The percent identity between the annotated sequence (contig) and the
database match, if applicable.

E-value The E-value of the match between the annotated sequence (contig)
and the database entry, if applicable

GC The GC-content of the annotated sequence (contig).

Length The length of the overlap between the annotated sequence (contig)
and the database feature.

Semi-graphical text output format

FARAO can generate a semi-graphical output indented to be used as an overview readable
directly in the Unix terminal or as a text file. This output is accompanied by a list of features
in FARAO list format (see above) for each contig, positioned below the “graphical”
representation of the contig. This is a somewhat edited example of the semi-graphical format
generated by FARAO:

contig-23401000007 0 === 850
PRODIGAL_PREDICTION 1:Predicted gene>
PFAM-A 3:cobW
PLASMID 2:gi|317053820|ref|NC_01483>4:gi|31>5:gi|38

Query Length Start End Description Identity E-value
¨¨
1 contig-23401000007 850 75 848 Predicted gene
2 contig-23401000007 850 82 142 gi|317053820| 86.89 1e-06
3 contig-23401000007 850 90 705 cobW 7.2e-55
4 contig-23401000007 850 248 304 gi|317053820| 91.23 2e-11
5 contig-23401000007 850 258 314 gi|386076436| 91.23 2e-11
¨¨

PNG image output

FARAO generates PNG output using the GD package. In addition to the generated images
(which will be placed in the directory supplied to the --images option), FARAO also writes the
normal list output to the terminal, which can be customized as normal. The options for
manipulating colors and other features of the images are described in the command-line
options for “get_annotations” in section 2 above. Note that PNG output requires the Perl
package GD (http://search.cpan.org/~lds/GD-2.56/lib/GD.pm) to be installed.

EPS vector graphics output

FARAO generates EPS output using the PostScript::Simple package. In addition to the
generated images (which will be placed in the directory supplied to the --images option),
FARAO also writes the normal list output to the terminal, which can be customized as
normal. The options for manipulating colors and other features of the images are described in
the command-line options for “get_annotations” in section 2 above. Note that EPS output
requires PostScript::Simple (http://search.cpan.org/~mcnewton/PostScript-Simple-0.09/) to
be installed.

FARAO database format

FARAO can also generate output in the form of a FARAO database of sequences satisfying
the selection options. This is useful to create sub-databases of, for example, only one specific
type of predictions or only the best hits for each prediction type. It is also highly useful for
converting a database stored in MySQL to FARAO format. Remember that only the best hits
for each prediction type in a given sequence range get saved to the new database unless the “-
b” option is turned off (“-b F”).

get_coverage
The get_coverage command can produce output in the form of a list of annotations matching
the given criteria in FARAO format, a text-based semi-graphical overview, or graphical
output in the PNG or EPS formats. The output formats are briefly described below.

List output in FARAO format

The list output is the standard output format for FARAO. It consists of a tab-separated list,
with one entry per line, representing a contig/read library combination. For each entry, the
following information is included: sequence ID, sequence length, GC-content, average
coverage, total mapped reads, and maximum number of mapped reads in one position. The
attributes are described below.

Attribute Description

Sequence ID The sequence ID of the annotated sequence (often referred to as the contig).

Sequence
length

The length of the annotated sequence (contig).

GC-content The GC-content of the annotated sequence (contig). [Optional]

Average
coverage

The average coverage over the entire contig, in mapped reads per basepair.

% covered The proportion of the contig that has been covered by reads from this
sequence library.

Total mapped
reads

The total number of reads mapped to this contig from this sequence library.

Max reads The maximal number of reads mapped to one single position on the contig.

Coverage table output

The table option outputs the coverage for each contig in different read libraries as a matrix,
with just the requested coverage number in each entry. These numbers can be the total
number of mapped reads, the mean coverage, the maximum coverage of any base in the
contig, the percent of the contig covered by reads from each library, or the length of the
contig. This can be specified by the “--table” option (see command-line options for
“get_coverage” in section 2 above). This is an example of how such a table can look like, in
this case showing the percent of the contig length covered (option “--table coverage”):

Contig set10 set11 set12 set13 set14 set15
set10_167_contig-3745000003 80.32 26.97 48.68 57.20 79.81 90.56
set15_121_contig-184000005 97.57 33.25 49.21 93.23 99.86 98.83
set14_129_contig-106000009 97.38 25.83 12.51 83.03 98.89 93.94
set14_130_contig-1779000002 95.06 33.02 15.21 91.26 98.16 100

Semi-graphical text output format

FARAO can generate a semi-graphical output of the coverage plots indented to be used as an
overview readable directly in the Unix terminal or as a text file. This output is accompanied
by the usual entry for that contig/sequence library combination in FARAO list format (see
above) for each contig, positioned below the “graphical” representation of the coverage. This
is a somewhat edited example of the semi-graphical format generated by FARAO:

set12_228_contig-9932000008 0 ============================ 560
set1 --------------------------
 3 -----------------------
 6 ---------------------
 9 ---- ------- -----
 12 ---- -- ---- ----
 15 -- ---- -
 18 -- ----
 21 -- --
 24 --
 27 --
 30 -
 33
 36

Contig Length GC Library Avg. Coverage % covered
Total mapped reads Max reads
¨¨
set12_228_contig-9932000008 560 28.75 set1 11.66607 91.96
99 38
¨¨

PNG image output

FARAO generates PNG output using the GD package. In addition to the generated images
(which will be placed in the directory supplied to the --images option), FARAO also writes the
normal list output to the terminal, which can be customized as normal. The options for
manipulating colors and other features of the images are described in the command-line
options for “get_coverage” in section 2 above. Note that PNG output requires the Perl
package GD (http://search.cpan.org/~lds/GD-2.56/lib/GD.pm) to be installed.

EPS vector graphics output

FARAO generates EPS output using the PostScript::Simple package. In addition to the
generated images (which will be placed in the directory supplied to the --images option),
FARAO also writes the normal list output to the terminal, which can be customized as
normal. The options for manipulating colors and other features of the images are described in
the command-line options for “get_coverage” in section 2 above. Note that EPS output
requires PostScript::Simple (http://search.cpan.org/~mcnewton/PostScript-Simple-0.09/) to
be installed.

FARAO database format

FARAO can also generate output in the form of a FARAO coverage database, containing
only sequences satisfying the selection options. This is useful to create sub-databases of
coverage of, for example, only reads from a certain library. It is also highly useful for
converting a coverage database stored in MySQL to FARAO format.

estimate_coverage
The output from estimate_coverage is divided into two sections. The first section is a copy of
the files containing annotation features supplied to the “-a” option, but with an additional
column added, containing the requested coverage information for each feature in the file. By
default, this column will contain the mean coverage over the feature, but using the “-m”
option this can be specified to instead contain the median coverage (“median”), maximum
coverage across the feature (“max”), the minimum coverage across the feature (“min”) or the
covered number of bases (“bases”).

The second part of the output follows after a separation line beginning with a “+” and
followed by several “=” characters. Each line in this section begins with a “+”, making it easy
to separate the two parts of the output using e.g. the grep utility. This section contains the
coverage information per feature regardless of which contig it was on, making it easy to
calculate the coverage of e.g. a certain Pfam domain, as in the example below. The table
contains the following columns: a plus sign, the identifier or description of the feature, the
number of such features encountered on the contigs, the total sum of the (mean – or whatever
else specified by the “-m” option) coverage across all reads, and the average coverage divided
across the identified features (that is, the average coverage per feature). Note that it most often
makes more sense to calculate the total sum rather than the average. Below, an example of
this second section is shown, showing the coverage of a few Pfam protein families:

+==
+ Feature Counts Total coverage Average coverage
+ AMP-binding 1 3.82357790601814 3.82357790601814
+ Cation_efflux 1 9.01935483870968 9.01935483870968
+ DDE_Tnp_ISL3 1 5.20512820512821 5.20512820512821
+ DDE_Tnp_Tn3 1 21.991452991453 21.991452991453
+ DUF4158 1 15.5515151515152 15.5515151515152
+ FAD-oxidase_C 1 5.08729139922978 5.08729139922978
+ FAD_binding_4 1 5.08796296296296 5.08796296296296
+ Fic 2 71.469696969697 35.7348484848485
+ Gly_radical 1 3.19444444444444 3.19444444444444

6. Custom FARAO parsers
FARAO is written to be easily extended to accept additional file formats, through the use of
custom parsers. As described in section 3, several additional parsers can be downloaded from
http://microbiology.se/software/farao/parsers

New parsers can be added simply by adding the parser file to the directory
“add_annotation_parsers” (for annotation parsers) or the “add_mapped_reads_parsers”
directory (for read coverage parsers). Note that these two directories must be located in the
same directory as the add_annotation and add_mapped_reads executables for FARAO to
find them.

New parsers can be written in any programming language, but need to adhere to the following
criteria to be functional:

1) The parser must be self-contained, that is it must be able to be executed on its own,
using only the path to it, without interpreter information.

2) The parser must be executable.

3) The parser must accept command-line arguments and write its output to standard
output.

The first point can generally be accomplished by either compiling the parser into a standalone
executable, or by adding a “#!/path/to/interpreter” as the first line of the parsing script
(supported by the vast majority of scripting language interpreters, such as Perl, Python and
Bash).

The second point is a matter of giving the parser file the correct permissions. Generally, this is
achieved by executing a command like “chmod 744 parser_file” on the parser file.

The third point is important since the main FARAO commands will call the parser using the
following form:

/path/to/farao/add_annotation_parsers/parse_annotations_format input_file
additional_options

They will then wait for output from the command, sent to standard output in the following
format, in the formats described below.

We strongly encourage users to submit functional and tested parsers to the FARAO parser
database, by attaching them to an e-mail containing a brief parser description, and sending it
to farao@microbiology.se

Annotation parsers (add_annotation)

The add_annotation command expects the parser to return information to standard output in
the following format:

contig_ID <>100-250::feature name::feature description::::98.4::1e-45<>

This format is specified as follows. First on each line is the sequence ID of the entry in the
annotation database (often referred to as the contig ID), followed by a tab. The “<>” symbols
indicate the start of each feature annotation. Currently, only one single annotation is allowed
for each line returned from the parser, but this might be extended in future versions of
FARAO. Backwards compatibility with this system will, however, be ensured in case of such
changes. Within each feature annotation, the “::” symbols are used to separate fields.
Consequently, feature names or feature descriptions cannot contain the substrings “::” or
“<>”. The starting “<>” symbols are followed by an interval specifying the base pair range
the new feature covers. The next item (after the “::” separator) is the name of the feature,
followed by a feature description (which can be left blank). The fourth field is left blank, and is
reserved for future development of the parser format (this field will be ignored by the

add_annotation commands). The second to last field should contain the percent identity of
the feature (a number between 0 and 100), is applicable. This field can be left blank. The last
field contains the E-value for the feature, and each line is then terminated by another “<>”
before the newline character (“\n”).

Read coverage parsers (add_mapped_reads)

The add_mapped_reads command expects the parser to return information to standard
output in a similar, but slightly different, format:

contig_ID <>100-250::read_ID::::::98.4::1e-45<>

This format is specified as above, but the second item (separated by “::”) of each read entry
(one per line) should be the read ID, and both the third and fourth fields remain unused (and
should be left blank).

Recommended practice for parsers

There are a few recommendations and tips for writing FARAO parsers.

• To allow the main programs to display a list of installed parsers and some brief
description of them, every line beginning with "# +" in the parser code will be
interpreted as information lines by FARAO, and displayed when add_annotation or
add_mapped_reads is executed with the “--formats” option.

• The parser can call other software, e.g. for reading the input file (see the BAM parser
for an example of this using Samtools).

• Bear in mind that a parser can always exit with an error message to standard error
and return no output to standard output, which will leave the annotation or coverage
database untouched.

• Although any number of additional arguments in theory can be supplied to the parser
scripts, the use of more than one additional option is strongly discouraged. This is
because the user then has to supply a complete set of options separated by spaces,
correctly quoted, when executing the FARAO command. This greatly increases the
probability for mistakes.

• The simplest parsers only read one-item-per-line input and generate one-item-per-
line output. For an example of a more complicated parser, see the HMMER
hmmsearch parser supplied with FARAO.

Parser examples

There are parser examples written in Perl, Python and Bash bundled with the FARAO
package. These example files are located in the “parser_examples” directory. These can be
used as a starting point for building complete parsers for any output format.

7. MySQL compatibility
FARAO supports MySQL through the DBI and DBD Perl modules. Note that all databases
need to be setup as regular FARAO databases using setup_annotation_db. They can then be
converted to MySQL format using the annotation_db_to_mysql and coverage_db_to_mysql
commands. This will create a file representing the MySQL database, which will contain the
information FARAO needs to connect to the MySQL server. This file is essential for the
functionality of FARAO and cannot be removed. Databases stored in MySQL format can be

dumped to the regular FARAO format using the following commands:

For annotation databases:

get_annotations -i <Database in MySQL format> -o db -b F > farao_database

For coverage databases:

get_coverage -i <Database in MySQL format> -o db > farao_database

Our internal testing suggests that for smaller databases (less than 10000 sequences), the
regular FARAO format for databases is usually somewhat faster to work with. For really large,
databases (several million sequences), MySQL is faster for the vast majority of tasks. In the
range between, performance is highly dependent on what kind of task the user wants to
accomplish. However, we have also noticed that the MySQL implementation of
add_mapped_reads is particularly slow, and there is probably room for future improvement
of this code.

It is worth mentioning that storing the databases in MySQL introduces more dependencies on
DBD, DBI and MySQL versions, and that all such combinations cannot be fully supported by
the developers. Also, use of the MySQL format reduces the portability of databases between
computers and users.

8. License information
Copyright (C) 2013-2015 Johan Bengtsson-Palme, Rickard Hammarén and Chandan Pal

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of University of Gothenburg, nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

