Microbiology, Metagenomics and Bioinformatics

Johan Bengtsson-Palme, University of Gothenburg

Browsing Posts tagged Annotation

I am happy to announce that our Viewpoint article on strategies for improving sequence databases has now been published in the journal Proteomics. The paper (1) defines some central problems hampering genomic, proteomic and metagenomic analyses and suggests five strategies to improve the situation:

  1. Clearly separate experimentally verified and unverified sequence entries
  2. Enable a system for tracing the origins of annotations
  3. Separate entries with high-quality, informative annotation from less useful ones
  4. Integrate automated quality-control software whenever such tools exist
  5. Facilitate post-submission editing of annotations and metadata associated with sequences

The paper is not long, so I encourage you to read it in its entirety. We believe that spreading this knowledge and pushing solutions to problems related to poor annotation metadata is vastly important in this era of big data. Although we specifically address protein-coding genes in this paper, the same logic also applies to other types of biological sequences. In this way the paper is related to my previous work with Henrik Nilsson on improving annotation data for taxonomic barcoding genes (2-4). This paper was one of the main end-results of the GoBiG network, and the backstory on the paper follows below the references…

References

  1. Bengtsson-Palme J, Boulund F, Edström R, Feizi A, Johnning A, Jonsson VA, Karlsson FH, Pal C, Pereira MB, Rehammar A, Sánchez J, Sanli K, Thorell K: Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics, Early view (2016). doi: 10.1002/pmic.201600034
  2. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TT, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Senés C, Smith ME, Suija A, Taylor DE, Telleria MT, Weiß M, Larsson KH: Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology, 22, 21, 5271–5277 (2013). doi: 10.1111/mec.12481
  3. Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE, Bahnmann B, Bahram M, Bengtsson-Palme J, Berlin A, Branco S, Chomnunti P, Dissanayake A, Drenkhan R, Friberg H, Frøslev TG, Halwachs B, Hartmann M, Henricot B, Jayawardena R, Jumpponen A, Kauserud H, Koskela S, Kulik T, Liimatainen K, Lindahl B, Lindner D, Liu J-K, Maharachchikumbura S, Manamgoda D, Martinsson S, Neves MA, Niskanen T, Nylinder S, Pereira OL, Pinho DB, Porter TM, Queloz V, Riit T, Sanchez-García M, de Sousa F, Stefaczyk E, Tadych M, Takamatsu S, Tian Q, Udayanga D, Unterseher M, Wang Z, Wikee S, Yan J, Larsson E, Larsson K-H, Kõljalg U, Abarenkov K: Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 67, 1, 11–19 (2014). doi: 10.1007/s13225-014-0291-8
  4. Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM, Bengtsson-Palme J, Walker D, de Sousa F, Gamper HA, Larsson E, Larsson K-H, Kõljalg U, Edgar R, Abarenkov K: A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environments, 30, 2, 145–150 (2015). doi: 10.1264/jsme2.ME14121

Backstory
In June 2013, the Gothenburg Bioinformatics Group for junior scientists (GoBiG) arranged a workshop with two themes: “Parallelized quantification of genes in large metagenomic datasets” and “Assigning functional predictions to NGS data”. The following discussion on how to database quality influenced results and what could be done to improve the situation was rather intense, and several good ideas were thrown around. I took notes from the meeting, and in the evening I put them down during a warm summer night at the balcony. In fact, the notes were good enough to be an early embryo for a manuscript. So I sent it to some of the most active GoBiG members (Kaisa Thorell and Fredrik Boulund), who were positive regarding the idea to turn it into a manuscript. I wrote it together more properly and we decided that everyone who contributed with ideas at the meeting would be invited to become co-authors. We submitted the manuscript in early 2014, only to see it (rather brutally) rejected. At that point most of us were sucked up in their own projects, so nothing happened to this manuscript for over a year. Then we decided to give it another go, updated the manuscript heavily and changed a few parts to better reflect the current database situation (at this point, e.g., UniProt had already started implementing some of our suggested ideas). Still, some of the proposed strategies were more radical in 2013 than they would be now, more than three years later. We asked the Proteomics editors if they would be interested in the manuscript, and they turned out to be very positive. Indeed, the entire experience with the editors at Proteomics has been very pleasant. I am very thankful to the GoBiG team for this time, and to the editors at Proteomics who saw the value of this manuscript.

Late last year, we introduced FARAO – the Flexible All-Round Annotation Organizer – a software tool that allows visualization of annotated features on contigs. Today, the Applications Note describing the software was published as an advance access paper in Bioinformatics (1). As I have described before, storing and visualizing annotation and coverage information in FARAO has a number of advantages. FARAO is able to:

  • Integrate annotation and coverage information for the same sequence set, enabling coverage estimates of annotated features
  • Scale across millions of sequences and annotated features
  • Filter sequences, such that only entries with annotations satisfying certain given criteria will be outputted
  • Handle annotation and coverage data produced by a range of different bioinformatics tools
  • Handle custom parsers through a flexible interface, allowing for adaption of the software to virtually any bioinformatic tool not supported out of the box
  • Produce high-quality EPS output
  • Integrate with MySQL databases

I have previously used FARAO to produce annotation figures in our paper on a polluted Indian lake (2), as well as in a paper on sewage treatment plants (which is in press and should be coming out any day now). We hope that the tool will find many more uses in other projects in the future!

References

  1. Hammarén R, Pal C, Bengtsson-Palme JFARAO: The Flexible All-Round Annotation Organizer. Bioinformatics, advance access (2016). doi: 10.1093/bioinformatics/btw499 [Paper link]
  2. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648 [Paper link]

A problem with annotating contigs from genomic and metagenomic projects is that there are few tools that allow the visualization of the annotated features, particularly if those features come from different sources. To alleviate this problem, I have (with assistance from Rickard Hammarén and Chandan Pal) over the last years developed a new annotation and read coverage visualization package – FARAO – which we today introduce to the public. FARAO has been used to produce the basis for the the contig annotation figures in my paper on the polluted Indian lake. Storing and visualizing annotation and coverage information in FARAO has a number of advantages. FARAO is able to:

  • Integrate annotation and coverage information for the same sequence set, enabling coverage estimates of annotated features
  • Scale across millions of sequences and annotated features
  • Filter sequences, such that only entries with annotations satisfying certain given criteria will be outputted
  • Handle annotation and coverage data produced by a range of different bioinformatics tools
  • Handle custom parsers through a flexible interface, allowing for adaption of the software to virtually any bioinformatic tool
  • Produce high-quality EPS output
  • Integrate with MySQL databases

FARAO is today moved from a private pre-release state to a public beta state. It is still possible that this version contains bug that we have not discovered in our testing. Please send me an e-mail and make us aware of the potential shortcomings of our software if you find any unexpected behavior in this version of FARAO.

My colleague Henrik Nilsson has been interviewed by the ResearchGate news team about the recent effort to better annotate ITS data for plant pathogenic fungi. It’s an interesting read, and I think Henrik nicely underscores why large-scale efforts for improving and correcting sequence annotations are important. You can read the interview here, and the paper they talk about is referenced below.

Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE, Bahnmann B, Bahram M, Bengtsson-Palme J, Berlin A, Branco S, Chomnunti P, Dissanayake A, Drenkhan R, Friberg H, Frøslev TG, Halwachs B, Hartmann M, Henricot B, Jayawardena R, Jumpponen A, Kauserud H, Koskela S, Kulik T, Liimatainen K, Lindahl B, Lindner D, Liu J-K, Maharachchikumbura S, Manamgoda D, Martinsson S, Neves MA, Niskanen T, Nylinder S, Pereira OL, Pinho DB, Porter TM, Queloz V, Riit T, Sanchez-García M, de Sousa F, Stefaczyk E, Tadych M, Takamatsu S, Tian Q, Udayanga D, Unterseher M, Wang Z, Wikee S, Yan J, Larsson E, Larsson K-H, Kõljalg U, Abarenkov K: Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, Volume 67, Issue 1 (2014), 11–19. doi: 10.1007/s13225-014-0291-8 [Paper link]

Another paper I have co-authored related to the UNITE database for fungal rDNA ITS sequences is now published as an Online Early article in Fungal Diversity. The paper describes an effort to improve the annotation of ITS sequences from fungal plant pathogens. Why is this important? Well, apart from fungal plant pathogens being responsible for great economic losses in agriculture, the paper is also conceptually important as it shows that together we can accomplish a substantial improvement to the metadata in sequence databases. In this work we have hunted down high-quality reference sequences for various plant pathogenic fungi, and re-annotated incorrectly or insufficiently annotated ITS sequences from the same fungal lineages. In total, the 59 authors have made 31,954 changes to UNITE database data, on average 540 changes per author. While one, or a few, persons could not feasibly have made this effort alone, this work shows that in larger consortia vast improvements can be made to the quality of databases, by distributing the work among many scientists. In many ways, this relates to proposals to “wikify” GenBank, and after Rfam and Pfam it might now be time to take the user-contribution model to, at least, the RefSeq portion of GenBank, which despite its description as being “comprehensive, integrated, non-redundant, [and] well-annotated” still contains errors and examples of non-usable annotation. More on that at a later point…

Paper reference:

Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE, Bahnmann B, Bahram M, Bengtsson-Palme J, Berlin A, Branco S, Chomnunti P, Dissanayake A, Drenkhan R, Friberg H, Frøslev TG, Halwachs B, Hartmann M, Henricot B, Jayawardena R, Jumpponen A, Kauserud H, Koskela S, Kulik T, Liimatainen K, Lindahl B, Lindner D, Liu J-K, Maharachchikumbura S, Manamgoda D, Martinsson S, Neves MA, Niskanen T, Nylinder S, Pereira OL, Pinho DB, Porter TM, Queloz V, Riit T, Sanchez-García M, de Sousa F, Stefaczyk E, Tadych M, Takamatsu S, Tian Q, Udayanga D, Unterseher M, Wang Z, Wikee S, Yan J, Larsson E, Larsson K-H, Kõljalg U, Abarenkov K: Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity Online early (2014). doi: 10.1007/s13225-014-0291-8 [Paper link]