Tag: Joakim Larsson

Open postdoc position

Together with Joakim Larsson‘s lab, we now have an open two-year postdoc position in bioinformatics on antibiotic resistance and biocide resistance. The development of antibiotic resistance has been driven by use of antibiotics, but antibacterial biocides also have the potential to select for antibiotic resistance. However, knowledge of which genes that contribute to biocide resistance and could be associated with antibiotic resistance is sparse. To some extent, such genes are documented in the BacMet database which we have developed, but this collection of resistance genes is only scratching the surface of all biocide resistance that exists among bacteria in the environment.

We are now looking for a postdoctoral fellow to continue the important work on bioinformatic analysis of biocide and antibiotic resistance to answer the question whether increasing biocide resistance would be a threat to human health. The postdoc will be working with the development of the BacMet database to make it more targeted towards biocidal substances and products in addition to resistance genes. The tasks include bioinformatic sequence analysis, literature studies and database and web programming. The work will also include investigations of the prevalence of the identified resistance genes in genomes and metagenomes.

The recruited person will work closely with both my group and the group of Prof. Joakim Larsson, and will participate in the JPIAMR-funded BIOCIDE project. You can apply to the postdoc position at the University of Gothenburg application portal: https://web103.reachmee.com/ext/I005/1035/job?site=7&lang=UK&validator=9b89bead79bb7258ad55c8d75228e5b7&job_id=25122

The deadline is May 4, 2022. Come work with us on this exciting topic in the intersect between two great research environments (if I may say it myself!) We look forward to your application!

Biocides and antibiotic resistance workshop

The newly formed BIOCIDE program, seeking to determine how antibacterial biocides contribute to the development of biocide resistance and spread of antibiotic resistant bacteria, is organizing a workshop on risk assessment of biocide and antibiotic resistance on the 9th of March this year. I will be giving a talk on the BacMet database and how that will be integrated in risk assessment and the research program. If you have an interest in the risk associated with biocides, or antibiotic resistance development, I strongly suggest that you take part in this exciting workshop, particularly if you are working for a regulatory authority.

The program targets biocide resistance and cross-resistance to antibiotics, guidance development for assessment of biocide resistance, the BacMet biocide resistance database, and the assessment of environmental exposure to biocides and risks for co-selection. The workshop will include speakers such as Joakim Larsson, Nabila Haddache, Marlene Ågerstrand and Frank Schreiber.

More information can be found here: https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance

202200020-G-Biocide-Workshop-1060x707-3.png

13 papers published on antibiotics in feed

Last week, I published 13 (!!) papers in the EFSA Journal on how to assess concentrations of antibiotics that could select for antibiotic resistance in animal feed (1-13). Or, well, you could also look at it as that the EFSA Biohaz panel that I have been a part of for more than two years published our final 13-part report.

Regardless of how you view it, this set of papers have two main takeaways:

  1. We present a method to establish Predicted Minimal Selective Concentrations (PMSCs) for antibiotics. This method uses a combination of Dan Andersson’s approach to MSCs (14) and the method I published with Joakim Larsson around five years ago to establish predicted no-effect concentrations (PNECs) for antibiotics based on MIC data (15). The combination is a powerful (but very cautious) tool to estimate minimal selective concentrations for antibiotics (1), and we have subsequently applied this method to animal feed contamination with antibiotics, but…
  2. There is way too little data to establish PMSCs for most antibiotics with any certainty. Really, the lack of data is so bad that for many of the antibiotic classes we could not make a reasonable assessment. Thus the main conclusion might be that we need a lot more data on how low concentrations of antibiotics that select for antibiotic resistance, both in laboratory systems and in more realistic settings.

References

  1. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 1: Methodology, general data gaps and uncertainties. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6852 [Paper link]
  2. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 2: Aminoglycosides/aminocyclitols: apramycin, paromomycin, neomycin and spectinomycin. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6853 [Paper link]
  3. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 3: Amprolium. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6854 [Paper link]
  4. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 4: ß-Lactams: amoxicillin and penicillin. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6855 [Paper link]
  5. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 5: Lincosamides: lincomycin. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6856 [Paper link]
  6. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 6: Macrolides: tilmicosin, tylosin and tylvalosin. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6858 [Paper link]
  7. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 7: Amphenicols: florfenicol and thiamphenicol. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6859 [Paper link]
  8. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6860 [Paper link]
  9. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 9: Polymyxins: colistin. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6861 [Paper link]
  10. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 10: Quinolones: flumequine and oxolinic acid. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6862 [Paper link]
  11. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 11: Sulfonamides. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6863 [Paper link]
  12. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 12: Tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6864[Paper link]
  13. EFSA Panel on Biological Hazards (BIOHAZ)*, Allende A, Koutsoumanis K, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson-Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López-Alonso M, Saxmose Nielsen S, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Lorenzo Innocenti M, Liébana E, López-Gálvez G, Manini P, Stella P, Peixe L: Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 13: Trimethoprim. EFSA Journal, 19, 10 (2021). doi: 10.2903/j.efsa.2021.6865 [Paper link]
  14. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al.: Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 7, e1002158 (2011). doi: 10.1371/journal.ppat.1002158
  15. Bengtsson-Palme J, Larsson DGJ: Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140-149 (2016). doi: 10.1016/j.envint.2015.10.015 [Paper link]

Quick update on the PhD position

I just wanted to very quickly brief applicants to the recently announced PhD position in the lab. We got 71 applications in total, most of which I consider relevant for the position. The bottom line is that this will take a few days to go through, but we are working on it, and will get in touch with the top candidates when we are done. I would, however, already like to thank everyone who applied – it’s amazing that you want to spend your time doing research that I find exiting!

Open PhD position

We are hiring a PhD student to work with effects of antibiotics on microbial communities! The project will use large-scale techniques to investigate how sub-inhibitory concentrations of antibiotics affect microbial communities. Specifically, the project will examine how the ability for bacteria to colonize and invade established microbial communities is impacted by antibiotics. The project will also explore how antibiotics influence the interactions between different species in bacterial communities and if this may change their ability to withstand invasions. The goal is to identify the genes and mechanisms that contribute to change and stability in microbial communities.

A cool thing about this position is that it is fairly adaptable to the eventual candidate, and the project can be somewhat tailored to suit the profile of the PhD student. This means that we’re looking for someone who is either a bioinformatician or an experimentalist (or both). Previous experience with microbial communities is a plus, but not a must.

If you feel that you are the right person for this position, you can apply here. More information is also available here. We look forward to your application! The deadline for applications is December 9.

The Lennart Sparell Prize

I am happy to announce that Cancer- och Allergifonden [the Cancer and Allergy Foundation] have awarded me with the first Lennart Sparell prize. The prize was instated in memory of the foundations founder – Lennart Sparell, who passed away last year – and is awarded to researchers (or other persons) who have thought outside-of-the-box or challenged the current paradigms. A particular emphasis is given to research on environmental pollutants that affect human health through food or environmental exposure.

Naturally, I am honored to be the recipient of this prize. The award was motivated by the research I have done on the role of ecological and evolutionary processes in the external environment in driving antibiotic resistance development, and how that can have consequences for human health. Particularly, I am happy that the research that I, Joakim Larsson, Erik Kristiansson and a few others on the role of environmental processes in the development of antibiotic resistance and the recruitment of novel resistance genes are given attention. This view, which perhaps do not challenge the paradigm but at the very least points to an alternative risk scenario, has often been neglected when environmental antibiotic resistance has been discussed.

The prize will be awarded on a ceremony on June 10 in Stockholm, but I would already now take the opportunity to thank everyone who has been involved in the research being recognized, particularly Joakim Larsson and Erik Kristiansson – this award is to a very very large extent to your merit.

Published paper: Breast milk and the infant gut resistome

This week, a paper by my former roommate Katariina Pärnänen was published by Nature Communications. In the paper (1), we use shotgun metagenomics to show that infants carry more resistant bacteria in their gut than adults do, irrespective of whether they themselves have been treated with antibiotics or not. We also found that the antibiotic resistance gene and mobile genetic element profiles of infant feces are more similar to those of their own mothers than to those of unrelated mothers. This is suggestive of a pathway of transmission of resistance genes from the mothers, and importantly we find that the mobile genetic elements in breastmilk are shared with those of the infant feces, despite vast differences in their microbiota composition. Finally, we find that termination of breastfeeding and intrapartum antibiotic prophylaxis of mothers are associated with higher abundances of specific ARGs in the infant gut. Our results suggest that infants inherit the legacy of past antibiotic consumption of their mothers via transmission of genes, but that the taxonomic composition of the microbiota still strongly dictates the overall load of resistance genes.

I am not going to dwell in to details of the study here, but I instead encourage you to read the paper (hey, it’s open access!) or the excellent popular summary that Katariina has already written. Finally, I want to emphasize the great work Katariina has put into this (I would know, since I shared room with her) and congratulate her on her own little infant!

Reference

  1. Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, Rautava S, Isolauri E, Salminen S, Kumar H, Satokari R, Virta M: Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nature Communications, 9, 3891 (2018). doi: 10.1038/s41467-018-06393-w [Paper link]

Published paper: Knowledge gaps for environmental antibiotic resistance

The outcomes from a workshop arranged by JPIAMR, the Swedish Research Council (VR) and CARe were just published as a short review paper in Environment International. In the paper, which was mostly moved forward by Prof. Joakim Larsson at CARe, we describe four major areas of knowledge gaps in the realm of environmental antibiotic resistance (1). We then highlight several important sub-questions within these areas. The broad areas we define are:

  • What are the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment?
  • What is the role of the environment as affected by anthropogenic inputs (e.g. pollution and other activities) on the evolution (mobilization, selection, transfer, persistence etc.) of antibiotic resistance?
  • How significant is the exposure of humans to antibiotic resistant bacteria via different environmental routes, and what is the impact on human health?
  • What technological, social, economic and behavioral interventions are effective to mitigate the emergence and spread of antibiotic resistance via the environment?

Although much has been written on the topic before (e.g. 2-12), I think it is unique that we collect and explicitly point out areas in which we are lacking important knowledge to build accurate risk models and devise appropriate intervention strategies. The workshop was held in Gothenburg on the 27–28th of September 2017. The workshop leaders Joakim Larsson, Ana-Maria de Roda Husman and Ramanan Laxminarayan were each responsible for moderating a breakout group, and every breakout group was tasked to deal with knowledge gaps related to either evolution, transmission or interventions. The reports of the breakout groups were then discussed among all participants to clarify and structure the areas where more research is needed, which boiled down to the four overarching critical knowledge gaps described in the paper (1).

This is a short paper, and I think everyone with an interest in environmental antibiotic resistance should read it and reflect over its content (because, we may of course have overlooked some important aspect). You can find the paper here.

References

  1. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel A, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S: Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 117, 132–138 (2018). doi: 10.1016/j.envint.2018.04.041
  2. Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42, 1, 68–80 (2018). doi: 10.1093/femsre/fux053
  3. Martinez JL, Coque TM, Baquero F: What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology 2015, 13:116–123. doi:10.1038/nrmicro3399
  4. Bengtsson-Palme J, Larsson DGJ: Antibiotic resistance genes in the environment: prioritizing risks. Nature Reviews Microbiology, 13, 369 (2015). doi: 10.1038/nrmicro3399-c1
  5. Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, et al.: Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environmental Health Perspectives, 121, 993–1001 (2013)
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, et al.: Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121, 878–85 (2013).
  7. Gillings MR: Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 4, 4 (2013).
  8. Baquero F, Alvarez-Ortega C, Martinez JL: Ecology and evolution of antibiotic resistance. Environmental Microbiology Reports, 1, 469–476 (2009).
  9. Baquero F, Tedim AP, Coque TM: Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4, 15 (2013).
  10. Berendonk TU, Manaia CM, Merlin C et al.: Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13, 310–317 (2015).
  11. Hiltunen T, Virta M, Laine A-L: Antibiotic resistance in the wild: an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 372 (2017) doi: 10.1098/rstb.2016.0039.
  12. Martinez JL: Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Frontiers in Microbiology, 2, 265 (2011).

Published paper: Selective concentrations for ciprofloxacin

My colleagues in Gothenburg have published a new paper in Environment International, in which I was involved in the bioinformatics analyses. In the paper, for which Nadine Kraupner did the lion’s share of the work, we establish minimal selective concentrations (MSCs) for resistance to the antibiotic ciprofloxacin in Escherichia coli grown in complex microbial communities (1). We also determine the community responses at the taxonomic and resistance gene levels. Nadine has made use of Sara Lundström’s aquarium system (2) to grow biofilms in the exposure of sublethal levels of antibiotics. Using the system, we find that 1 μg/L ciprofloxacin selects for the resistance gene qnrD, while 10 μg/L ciprofloxacin is required to detect changes of phenotypic resistance. In short, the different endpoints studied (and their corresponding MSCs) were:

  • CFU counts from test tubes, grown on R2A plates with 2 mg/L ciprofloxain – MSC = 5 μg/L
  • CFU counts from aquaria, grown on R2A plates with 0.25 or 2 mg/L ciprofloxain – MSC = 10 μg/L
  • Chromosomal resistance mutations – MSC ~ 10 μg/L
  • Increased resistance gene abundances, metagenomics – MSC range: 1 μg/L
  • Changes to taxonomic diversity1 µg/L
  • Changes to taxonomic community composition – MSC ~ 1-10 μg/L

We have previously reported a predicted no-effect concentration for resistance of 0.064 µg/L for ciprofloxacin (3), which corresponds fairly well with the MSCs determined experimentally here, being around a factor of ten off. However, we cannot exclude that in other experimental systems, the selective effects of ciprofloxacin could be even lower and thus the predicted PNEC may still be relevant. The selective concentrations we report for ciprofloxacin are close to those that have been reported in sewage treatment plants (3-5), suggesting the possibility for weak selection of resistance. Several recent reports have underscored the need to populate the this far conceptual models for resistance development in the environment with actual numbers (6-10). Determining selective concentrations for different antibiotics in actual community settings is an important step on the road towards building accurate quantitative models for resistance emergence and propagation.

References

  1. Kraupner N, Ebmeyer S, Bengtsson-Palme J, Fick J, Kristiansson E, Flach C-F, Larsson DGJ: Selective concentration for ciprofloxacin in Escherichia coli grown in complex aquatic bacterial biofilms. Environment International, 116, 255–268 (2018). doi: 10.1016/j.envint.2018.04.029 [Paper link]
  2. Lundström SV, Östman M, Bengtsson-Palme J, Rutgersson C, Thoudal M, Sircar T, Blanck H, Eriksson KM, Tysklind M, Flach C-F, Larsson DGJ: Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Science of the Total Environment, 553, 587–595 (2016). doi: 10.1016/j.scitotenv.2016.02.103 [Paper link]
  3. Bengtsson-Palme J, Larsson DGJ: Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140-149 (2016). doi: 10.1016/j.envint.2015.10.015
  4. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47, 957–995 (2013). doi:10.1016/j.watres.2012.11.027
  5. Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach C-F, Kristiansson E, Fick J, Tysklind M, Larsson DGJ: Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Science of the Total Environment, 572, 697–712 (2016). doi: 10.1016/j.scitotenv.2016.06.228
  6. Ågerstrand M, Berg C, Björlenius B, Breitholtz M, Brunstrom B, Fick J, Gunnarsson L, Larsson DGJ, Sumpter JP, Tysklind M, Rudén C: Improving environmental risk assessment of human pharmaceuticals. Environmental Science and Technology (2015). doi:10.1021/acs.est.5b00302
  7. Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42, 1, 68–80 (2018). doi: 10.1093/femsre/fux053
  8. Joint Programming Initiative on Antimicrobial Resistance: JPIAMR Workshop on Environmental Dimensions of AMR: Summary and recommendations. JPIAMR (2017). [Link]
  9. Angers A, Petrillo P, Patak, A, Querci M, Van den Eede G: The Role and Implementation of Next-Generation Sequencing Technologies in the Coordinated Action Plan against Antimicrobial Resistance. JRC Conference and Workshop Report, EUR 28619 (2017). doi: 10.2760/745099
  10. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel A, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S: Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, in press (2018). doi: 10.1016/j.envint.2018.04.041