Tag: Environmental monitoring

We’re hiring a postdoc in environmental AMR monitoring

As part of the SEARCHER program, we are now hiring a two-year postdoc to work with innovative approaches to antibiotic resistance monitoring. You can read more about the position here and at Chalmers’ job portal, but in short we are after a wet-lab postdoc who are willing to do field work and laboratory studies to identify novel antibiotic resistance genes.

Please do not send me your CV and application letter via e-mail, but apply through the Chalmers application portal. Sending your CV to me will not increase your changes. Only contact me about this position if you have actual, relevant questions about the position (as I will otherwise get lots of unwanted e-mails…) Those questions, I am happy to answer!

Veterinary AMR conference

On the 5th and 6th of October this year, I will be taking part in a relatively small, but very interesting conference on veterinary and environmental AMR, held in Amsterdam. The theme of the event will be “Optimal practices to protect human health care from antimicrobial resistance selected in the veterinary domain”.

The aim of the conference is to discuss innovative additional measures to prevent development of resistance in animals. In addition, the participants will explore possibilities to prevent transfer to human health care after selection has taken place. The conference program will consist of both lectures and break-out sessions and is intended for researchers as well as for policy makers involved in the battle against antimicrobial resistance. The results of the break-out sessions are to be published in an open access journal, and I will be charing one of these break-out sessions. Please see the conference web site for the entire program: https://www.nvwa.nl/amrconference

There is an upper cap of 120 participants for the event, so if you’re interested make sure to register soon! The conference will be held on October 5 and 6 2023 in the Park Inn by Radisson in Amsterdam, The Netherlands. The hotel is easy to reach by a 12 minutes train ride from Schiphol airport and a 5 minutes train ride from the city center. 

I look forward to seeing you in Amsterdam!

Published papers: Environmental monitoring of antibiotic resistance

In just a few days, Environment International has published two papers coming out from the EMBARK consortium which are somewhat connected to each other.

The first (or technically the second, but the other order makes more sense when explaining this…) is the first paper involving most of the people who have been working in the EMBARK consortium for an extended period of time. It’s an overview paper titled “Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement Itit, and what are the data needs?(1) and I think the title describes the topic pretty well. Basically, we go through why it would be interesting to monitor for antibiotic resistance in the environments, how that could be implemented and what we would need to know to get there.

The very condensed story is that if one is considering implementing monitoring for environmental resistance, these are a few things that should be considered:

  • The purpose of monitoring: What is the motivation? What should be achieved? What type of risk should be assessed? What type of action would monitoring enable?
  • Choice of methods: Which methods are economically feasible? Which methods would deliver results within a useful timeframe for taking appropriate actions?
  • Targeted environments: In what type of environment would monitoring for a given purpose be worthwhile?
  • Intended users: Who would be able to use, implement and act upon this strategy?
  • Integration potential: How does this monitoring integrate with other monitoring efforts? How can the resulting data be communicated?

We then dive into the knowledge gaps we are currently facing, and particularly highlight the following areas:

  • Establish how different existing methods for monitoring resistance compare to each other
  • Extend pathogen-centric databases for resistance genes with latent resistance genes (2)
  • Determine the locations and type of environments relevant for resistance monitoring
    To reduce costs, utilizing already existing environmental monitoring should be prioritized, as should locations integrated into operating or planned surveillance programs. More efforts should also be made to identify additional pathways for resistance transmission through the environment.
  • Study the environment as a source and transmission route for antibiotic resistance
    Stratify risks associated with resistance genes found in the environment. Define typical levels of antibiotic resistance in different environments (3), and define how these levels change over time.
  • Identify settings where the relationship between fecal bacteria and antibiotic resistance is absent
    Usually, these levels follow each other, but the environments where they don’t are important as they deviate from the expected baseline of resistance. This knowledge can aid in identifying situations in which it would be helpful to investigate a microbial community for resistance to specific antibiotics.
  • Identify the origins for more antibiotic resistance genes (4)
    This knowledge will be instrumental in preventing the emergence of new forms of resistance in pathogens in the future.

An important outcome of this paper is that we realise that we are still not at a level of understanding where routine monitoring for resistance in the environment can be easily justified or implemented. Still, there is a need for monitoring data in natural environments to even get started, and therefore we support the implementation of national, regional and global of initiatives without having all the scientific answers. The lack of comprehensive understanding should not be an obstacle to starting environmental monitoring for AMR, nor for action against environmental development and spread of AMR.

The second paper is very much related to the first, in that it actually tries to address one of these knowledge gaps: the need for normal background levels of antibiotic resistance in different environments. In this paper, Anna Abramova did an herculean effort collecting (we hope) all qPCR data on antibiotic resistance gene abundances in the environment for the past two decades. All in all, she collected data for more than 1500 samples across 150 studies and integrated these into an analys of what we could consider normal levels of resistance in different environments.

For an ‘average’ resistance gene, we found that the normal relative abundance range was form 10-5 to 10-3 copies per bacterial 16S rRNA, or that around one in 1,000 bacteria would carry a given resistance gene. This level varied quite a bit between different resistance genes, however, but not so much between environmental types (except for in human and animal feces, where some resistance genes were clearly more abundant, most prominently tetracycline resistance genes). What was more striking was that there was a clear difference between environments impacted or likely impacted by human activities, as opposed to more pristine environments with little to none human impact. Some resistance genes, such as tetA, tetG, blaTEM and blaCTX-M, showed very marked differences between these impacted and non-impacted environments, making them great markers of human-activity-associated resistance.

Our final recommendations with regards to monitoring include:

  • Include the intI1, sul1, blaTEM, blaCTX-M and qnrS genes in environmental monitoring, along with a selection of tetracycline resistance genes, including either tetA or tetG.
  • Other potential target genes could be sul3, vanA, tetH, aadA2, floR, ereA and mexF, which are abundant in some environments, but are not often included in qPCR studies of environmental AMR
  • If a gene deviates from the expected 10-5 to 10-3 interval, this warrants further investigation of the causes.
  • Maximum acceptable levels need to be determined not only taking relative abundances of genes into account, but also risks to human health as well as the numbers of bacteria in a given volume of sample into account (5,6) and transmission routes to humans (7)
  • The different standards of reporting DNA abundances constituted a complicating factor for this study. Both abundances of resistance genes relative to the 16S rRNA gene and to the sample volume or weight should be reported.
  • The absence of clear trends of increases or decreases in resistance gene abundances over time indicates a need for more systematic time series data in a variety of environments.

Our results also highlighted the scarcity of resistance gene data from parts of the world, particularly from Africa and South America, and underscores the need for a concerted effort to quantify typical background levels of resistance in the environment more broadly to enable efficient environmental surveillance schemes akin to those that exist in clinical and veterinary settings.

I encourage anyone with an interesting these topics to at least skim the full papers [Monitoring overview paper here, Normal qPCR resistance abundances here]. These will be great resources and I am very proud of them both. I would really like to thank the entire EMBARK team and our collaborators in CORNELIA, WastPAN and in other organisations. I would also like to thank Anna for her hard work on collecting and analysing the qPCR data for around two years. It has been a long ride, and I think we are both happy, proud and a bit relieved to finally see this paper published!

References

  1. Bengtsson-Palme J, Abramova A, Berendonk TU, Coelho LP, Forslund SK, Gschwind R, Heikinheimo A, Jarquin-Diaz VH, Khan AA, Klümper U, Löber U, Nekoro M, Osińska AD, Ugarcina Perovic S, Pitkänen T, Rødland EK, Ruppé E, Wasteson Y, Wester AL, Zahra R: Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs? Environment International, 108089 (2023). doi: 10.1016/j.envint.2023.108089
  2. Inda-Díaz JS, Lund D, Parras-Moltó M, Johnning A, Bengtsson-Palme J, Kristiansson E: Latent antibiotic resistance genes are abundant, diverse, and mobile in human, animal, and environmental microbiomes. Microbiome, 11, 44 (2023). doi: 10.1186/s40168-023-01479-0
  3. Abramova A, Berendonk TU, Bengtsson-Palme J: A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. Environment International, 178, 108084 (2023). doi: 10.1016/j.envint.2023.108084
  4. Ebmeyer S, Kristiansson E, Larsson DGJ: A framework for identifying the recent origins of mobile antibiotic resistance genes. Communications Biology, 4 (2021). doi:10.1038/s42003-020-01545-5
  5. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel A, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S: Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 117, 132–138 (2018). doi: 10.1016/j.envint.2018.04.041
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121, 878–885 (2013). doi:10.1289/ehp.1206446
  7. Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42, 1, 68–80 (2018). doi: 10.1093/femsre/fux053

More podcasting: The AMR Studio

Not only did we release the most recent episode of the lab’s podcast this weekend. Today, the episode of The AMR Studio where I’m interviewed by Eva Garmendia of the Uppsala Antibiotic Center was put online. We talk mostly about antibiotic resistance in the environment and the role that the EMBARK program can play in mitigating environmental resistance. I think it’s a nice listen (recorded in the beautiful world pre-covid-19). Find it where you find podcasts (e.g. Apple or Spotify).

Conferences and a PhD position

Here’s some updates on my Spring schedule.

On March 19, I will be presenting the EMBARK program and what we aim to achieve at a conference organised by the Swedish Medical Products Agency called NordicMappingAMR. The event will feature an overview of existing monitoring of antibiotics and antibiotic resistant bacteria in the environment. The conference aims to present the results from this survey, to listen to experts in the field and to discuss possible progress. It takes place in Uppsala. For any further questions, contact Kia Salin at NordicMappingAMR@lakemedelsverket.se

Then on May 18 to 20 I will participate in the 7th Microbiome & Probiotics R&D and Business Collaboration Forum in Rotterdam. This industry/academia cross-over event focuses on cutting-edge microbiome and probiotics research, and challenges and opportunities in moving research towards commercialisation. I will talk on the work we do on deciphering genetic mechanisms behind microbial interactions in microbiomes on May 20.

And finally, I also want to bring the attention to that my collaborator Erik Kristiansson has an open PhD position in his lab. The position is funded by the Environmental Dimensions of Antibiotic Resistance (EDAR) research project, aiming to describe the environmental role in the development and promotion of antibiotic resistance. The focus of the PhD position will be on analysis of large-scale data, with special emphasis on the identification of new forms of resistance genes. The project also includes phylogenetic analysis and development of methods for assessment of gene evolution. More info can be found here.

Open postdoc position

We are hiring a postdoc to work with environmental monitoring of antimicrobial resistance. The project is part of the EMBARK program and will consider different aspects of establishing a baseline for background antibiotic resistance in the environment, standardization of monitoring protocols and development of methods to detect emerging resistance threats. The project will involve work with environmental sampling, DNA extractions, bacterial culturing and generation of large-scale DNA sequence data. In terms of bioinformatic analyses, the project will encompass analysis of next-generation sequence data, genome-resolved metagenomics, short-read assembly and network analysis.

We look for a skilled bioinformatician, preferably with experience of experimental laboratory work. If you feel that you are the right person for this position, you can apply here. More information is also available here. We look forward to your application! The deadline for applications is January 3.

EMBARK funded by JPIAMR

I am very happy to announce today (on the European Antibiotic Awareness Day), that the EMBARK project that I am coordinator for got funded by JPIAMR with almost 1.4 million Euros over three years!

The primary goal of EMBARK is to establish a baseline for how common resistance is in the environment and what resistance types that can be expected where. That background data will then underpin efforts to standardize different methods for resistance surveillance and identify high-priority targets that should be used for efficient monitoring. In addition, EMBARK will develop and evaluate methods to detect new resistance factors and thereby provide an early-warning system for emerging resistance threats.

EMBARK is an international collaboration funded by JPIAMR. The consortium consists of myself, Thomas Berendonk (TU-Dresden, Germany), Luis Pedro Coelho (Fudan University, China), Sofia Forslund (ECRC Max-Delbrück-Centrum für Molekulare Medizin, Germany), Etienne Ruppé (INSERM, France) and Rabaab Zahra (Quaid-i-Azam University, Pakistan).

EMBARK has a website where the protocols and data generated during the project will be released. Follow our progress towards better monitoring of antimicrobial resistance in the environment here and on the EMBARK Twitter account: @EMBARK_JPIAMR!

Published paper: Knowledge gaps for environmental antibiotic resistance

The outcomes from a workshop arranged by JPIAMR, the Swedish Research Council (VR) and CARe were just published as a short review paper in Environment International. In the paper, which was mostly moved forward by Prof. Joakim Larsson at CARe, we describe four major areas of knowledge gaps in the realm of environmental antibiotic resistance (1). We then highlight several important sub-questions within these areas. The broad areas we define are:

  • What are the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment?
  • What is the role of the environment as affected by anthropogenic inputs (e.g. pollution and other activities) on the evolution (mobilization, selection, transfer, persistence etc.) of antibiotic resistance?
  • How significant is the exposure of humans to antibiotic resistant bacteria via different environmental routes, and what is the impact on human health?
  • What technological, social, economic and behavioral interventions are effective to mitigate the emergence and spread of antibiotic resistance via the environment?

Although much has been written on the topic before (e.g. 2-12), I think it is unique that we collect and explicitly point out areas in which we are lacking important knowledge to build accurate risk models and devise appropriate intervention strategies. The workshop was held in Gothenburg on the 27–28th of September 2017. The workshop leaders Joakim Larsson, Ana-Maria de Roda Husman and Ramanan Laxminarayan were each responsible for moderating a breakout group, and every breakout group was tasked to deal with knowledge gaps related to either evolution, transmission or interventions. The reports of the breakout groups were then discussed among all participants to clarify and structure the areas where more research is needed, which boiled down to the four overarching critical knowledge gaps described in the paper (1).

This is a short paper, and I think everyone with an interest in environmental antibiotic resistance should read it and reflect over its content (because, we may of course have overlooked some important aspect). You can find the paper here.

References

  1. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel A, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S: Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 117, 132–138 (2018). doi: 10.1016/j.envint.2018.04.041
  2. Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42, 1, 68–80 (2018). doi: 10.1093/femsre/fux053
  3. Martinez JL, Coque TM, Baquero F: What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology 2015, 13:116–123. doi:10.1038/nrmicro3399
  4. Bengtsson-Palme J, Larsson DGJ: Antibiotic resistance genes in the environment: prioritizing risks. Nature Reviews Microbiology, 13, 369 (2015). doi: 10.1038/nrmicro3399-c1
  5. Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, et al.: Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environmental Health Perspectives, 121, 993–1001 (2013)
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, et al.: Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121, 878–85 (2013).
  7. Gillings MR: Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 4, 4 (2013).
  8. Baquero F, Alvarez-Ortega C, Martinez JL: Ecology and evolution of antibiotic resistance. Environmental Microbiology Reports, 1, 469–476 (2009).
  9. Baquero F, Tedim AP, Coque TM: Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4, 15 (2013).
  10. Berendonk TU, Manaia CM, Merlin C et al.: Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13, 310–317 (2015).
  11. Hiltunen T, Virta M, Laine A-L: Antibiotic resistance in the wild: an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 372 (2017) doi: 10.1098/rstb.2016.0039.
  12. Martinez JL: Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Frontiers in Microbiology, 2, 265 (2011).

Published paper: Aquatic effect-based monitoring tools

A couple of days ago a paper was published in Environmental Sciences Europe summarizing the EU report on effect-based tools for use in toxicology in the aquatic environment I have been involved in (1). This report was officially published last spring (2), and can be found here, with the annex available on the European Commission document website. My contribution to the paper was, as with the report, in the genomics and metagenomics section. The paper briefly presents modern bioassays, biomarkers and ecological methods that can be used for aquatic monitoring of the environment.

References:

  1. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Dulio V, Broeg K, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, O’Toole S, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Hollert H, Di Paolo C, Brack W. Kammann U, Kase R: The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe, 27, 7 (2015). doi: 10.1186/s12302-015-0039-4 [Paper link]
  2. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Broeg K, Kammann U, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kase R, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Dulio V, Hollert H, Di Paolo C, Brack W (2014). Technical Report on Aquatic Effect-Based Monitoring Tools. European Commission. Technical Report 2014-077, Office for Official Publications of European Communities, ISBN: 978-92-79-35787-9. doi:10.2779/7260