Tag: Environmental monitoring

More podcasting: The AMR Studio

Not only did we release the most recent episode of the lab’s podcast this weekend. Today, the episode of The AMR Studio where I’m interviewed by Eva Garmendia of the Uppsala Antibiotic Center was put online. We talk mostly about antibiotic resistance in the environment and the role that the EMBARK program can play in mitigating environmental resistance. I think it’s a nice listen (recorded in the beautiful world pre-covid-19). Find it where you find podcasts (e.g. Apple or Spotify).

Conferences and a PhD position

Here’s some updates on my Spring schedule.

On March 19, I will be presenting the EMBARK program and what we aim to achieve at a conference organised by the Swedish Medical Products Agency called NordicMappingAMR. The event will feature an overview of existing monitoring of antibiotics and antibiotic resistant bacteria in the environment. The conference aims to present the results from this survey, to listen to experts in the field and to discuss possible progress. It takes place in Uppsala. For any further questions, contact Kia Salin at NordicMappingAMR@lakemedelsverket.se

Then on May 18 to 20 I will participate in the 7th Microbiome & Probiotics R&D and Business Collaboration Forum in Rotterdam. This industry/academia cross-over event focuses on cutting-edge microbiome and probiotics research, and challenges and opportunities in moving research towards commercialisation. I will talk on the work we do on deciphering genetic mechanisms behind microbial interactions in microbiomes on May 20.

And finally, I also want to bring the attention to that my collaborator Erik Kristiansson has an open PhD position in his lab. The position is funded by the Environmental Dimensions of Antibiotic Resistance (EDAR) research project, aiming to describe the environmental role in the development and promotion of antibiotic resistance. The focus of the PhD position will be on analysis of large-scale data, with special emphasis on the identification of new forms of resistance genes. The project also includes phylogenetic analysis and development of methods for assessment of gene evolution. More info can be found here.

Open postdoc position

We are hiring a postdoc to work with environmental monitoring of antimicrobial resistance. The project is part of the EMBARK program and will consider different aspects of establishing a baseline for background antibiotic resistance in the environment, standardization of monitoring protocols and development of methods to detect emerging resistance threats. The project will involve work with environmental sampling, DNA extractions, bacterial culturing and generation of large-scale DNA sequence data. In terms of bioinformatic analyses, the project will encompass analysis of next-generation sequence data, genome-resolved metagenomics, short-read assembly and network analysis.

We look for a skilled bioinformatician, preferably with experience of experimental laboratory work. If you feel that you are the right person for this position, you can apply here. More information is also available here. We look forward to your application! The deadline for applications is January 3.

EMBARK funded by JPIAMR

I am very happy to announce today (on the European Antibiotic Awareness Day), that the EMBARK project that I am coordinator for got funded by JPIAMR with almost 1.4 million Euros over three years!

The primary goal of EMBARK is to establish a baseline for how common resistance is in the environment and what resistance types that can be expected where. That background data will then underpin efforts to standardize different methods for resistance surveillance and identify high-priority targets that should be used for efficient monitoring. In addition, EMBARK will develop and evaluate methods to detect new resistance factors and thereby provide an early-warning system for emerging resistance threats.

EMBARK is an international collaboration funded by JPIAMR. The consortium consists of myself, Thomas Berendonk (TU-Dresden, Germany), Luis Pedro Coelho (Fudan University, China), Sofia Forslund (ECRC Max-Delbrück-Centrum für Molekulare Medizin, Germany), Etienne Ruppé (INSERM, France) and Rabaab Zahra (Quaid-i-Azam University, Pakistan).

EMBARK has a website where the protocols and data generated during the project will be released. Follow our progress towards better monitoring of antimicrobial resistance in the environment here and on the EMBARK Twitter account: @EMBARK_JPIAMR!

Published paper: Knowledge gaps for environmental antibiotic resistance

The outcomes from a workshop arranged by JPIAMR, the Swedish Research Council (VR) and CARe were just published as a short review paper in Environment International. In the paper, which was mostly moved forward by Prof. Joakim Larsson at CARe, we describe four major areas of knowledge gaps in the realm of environmental antibiotic resistance (1). We then highlight several important sub-questions within these areas. The broad areas we define are:

  • What are the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment?
  • What is the role of the environment as affected by anthropogenic inputs (e.g. pollution and other activities) on the evolution (mobilization, selection, transfer, persistence etc.) of antibiotic resistance?
  • How significant is the exposure of humans to antibiotic resistant bacteria via different environmental routes, and what is the impact on human health?
  • What technological, social, economic and behavioral interventions are effective to mitigate the emergence and spread of antibiotic resistance via the environment?

Although much has been written on the topic before (e.g. 2-12), I think it is unique that we collect and explicitly point out areas in which we are lacking important knowledge to build accurate risk models and devise appropriate intervention strategies. The workshop was held in Gothenburg on the 27–28th of September 2017. The workshop leaders Joakim Larsson, Ana-Maria de Roda Husman and Ramanan Laxminarayan were each responsible for moderating a breakout group, and every breakout group was tasked to deal with knowledge gaps related to either evolution, transmission or interventions. The reports of the breakout groups were then discussed among all participants to clarify and structure the areas where more research is needed, which boiled down to the four overarching critical knowledge gaps described in the paper (1).

This is a short paper, and I think everyone with an interest in environmental antibiotic resistance should read it and reflect over its content (because, we may of course have overlooked some important aspect). You can find the paper here.

References

  1. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel A, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S: Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 117, 132–138 (2018). doi: 10.1016/j.envint.2018.04.041
  2. Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42, 1, 68–80 (2018). doi: 10.1093/femsre/fux053
  3. Martinez JL, Coque TM, Baquero F: What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology 2015, 13:116–123. doi:10.1038/nrmicro3399
  4. Bengtsson-Palme J, Larsson DGJ: Antibiotic resistance genes in the environment: prioritizing risks. Nature Reviews Microbiology, 13, 369 (2015). doi: 10.1038/nrmicro3399-c1
  5. Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, et al.: Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environmental Health Perspectives, 121, 993–1001 (2013)
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, et al.: Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121, 878–85 (2013).
  7. Gillings MR: Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in Microbiology, 4, 4 (2013).
  8. Baquero F, Alvarez-Ortega C, Martinez JL: Ecology and evolution of antibiotic resistance. Environmental Microbiology Reports, 1, 469–476 (2009).
  9. Baquero F, Tedim AP, Coque TM: Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4, 15 (2013).
  10. Berendonk TU, Manaia CM, Merlin C et al.: Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13, 310–317 (2015).
  11. Hiltunen T, Virta M, Laine A-L: Antibiotic resistance in the wild: an eco-evolutionary perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 372 (2017) doi: 10.1098/rstb.2016.0039.
  12. Martinez JL: Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Frontiers in Microbiology, 2, 265 (2011).

Published paper: Aquatic effect-based monitoring tools

A couple of days ago a paper was published in Environmental Sciences Europe summarizing the EU report on effect-based tools for use in toxicology in the aquatic environment I have been involved in (1). This report was officially published last spring (2), and can be found here, with the annex available on the European Commission document website. My contribution to the paper was, as with the report, in the genomics and metagenomics section. The paper briefly presents modern bioassays, biomarkers and ecological methods that can be used for aquatic monitoring of the environment.

References:

  1. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Dulio V, Broeg K, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, O’Toole S, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Hollert H, Di Paolo C, Brack W. Kammann U, Kase R: The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe, 27, 7 (2015). doi: 10.1186/s12302-015-0039-4 [Paper link]
  2. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Broeg K, Kammann U, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kase R, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Dulio V, Hollert H, Di Paolo C, Brack W (2014). Technical Report on Aquatic Effect-Based Monitoring Tools. European Commission. Technical Report 2014-077, Office for Official Publications of European Communities, ISBN: 978-92-79-35787-9. doi:10.2779/7260

EU report on effect-based tools for ecotoxicology

Because of my previous involvement in a Swedish report on toxicological monitoring using (meta)-genomics tools [1], I also became in a related EU report on effect-based tools for use in toxicology in the aquatic environment. This report has recently been officially published [2], and can be found here, with the annex available on the European Commission document website. My contribution to this report has been in the genomics and metagenomics section (Chapter 7: OMICS techniques), in which I wrote the metagenomics part and contributed to the rest. I personally think this is a quite forward-thinking report, which is nice for a large institution such as the EU.

  1. Länsstyrelsen i Västra Götalands län. (2012). Swedish monitoring of hazardous substances in the aquatic environment (No. 2012:23). (A.-S. Wernersson, Ed.) Current vs required monitoring and potential developments (pp. 1–291). Länsstyrelsen i Västra Götalands län, vattenvårdsenheten.
  2. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Broeg K, Kammann U, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kase R, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Dulio V, Hollert H, Di Paolo C, Brack W (2014). Technical Report on Aquatic Effect-Based Monitoring Tools. European Commission. Technical Report 2014-077, Office for Official Publications of European Communities, ISBN: 978-92-79-35787-9. doi:10.2779/7260

Swedish monitoring of hazardous substances

I was recently involved as an adviser in a report by the County Administrative Board in Västra Götaland (Länsstyrelsen) which has now been published [1]. [UPDATE: The PDF link at Länsstyrelsen’s page does not seem to work, but leads to another report in Swedish. I have reported this error to the web admin, we’ll see what happens. Once again, the PDF seems to work.] The report aims to identify gaps in the current monitoring system of hazardous substances in the Swedish environment. The report deals with effect based monitoring tools and their usefulness for predicting and/or observing effects of hazardous substances in the environment. The overall conclusion of the report is that there are several gaps in both knowledge and techniques, and a need for developing new resources. However, Sweden still has a good potential to adapt the monitoring system to fill the needs. I have been involved in one of the last chapters, describing the use of metagenomics if study ecosystem function (chapter 30.3). For people with an interest in environmental monitoring, the report is an interesting read in its entirety. For those more interested in applications for metagenomics I recommend turning to page 285 and continue to the end of the report (it’s only five pages on metagenomics, so you’ll manage).

  1. Länsstyrelsen i Västra Götalands län. (2012). Swedish monitoring of hazardous substances in the aquatic environment (No. 2012:23). (A.-S. Wernersson, Ed.) Current vs required monitoring and potential developments (pp. 1–291). Länsstyrelsen i Västra Götalands län, vattenvårdsenheten.