Published paper: E. coli in coastal marine sediments

Last week, FEMS Microbes published our most recent work on the genomes of Escherichia coli in coastal marine sediments from the Helsingborg area in Sweden (1). Part of our sampled area was next to the discharge point of the city’s wastewater treatment plant (WWTP) effluent. We discovered that the E. coli population in these sediment is diverse, containing serotypes typically associated with both humans, livestock and other animals. We also found that virulence genes were more common among the isolates collected closer to the WWTP discharge site. Only one isolate was phenotypically antibiotic resistant, and carried corresponding tetracycline resistance genes on a plasmid. All isolates were halotolerant, growing at 3.5% NaCl. Since most isolates were also good at forming biofilm, this suggests that marine sediments can select for E. coli with increased survival properties and could be a potential reservoir for E. coli that could be spread to humans when the sediments are disturbed. Furthermore, the naturalisation of these E. coli questions it as an indicator for faecal contamination of marine sediments.

The paper is primarily the work of Isabel Erb, Carolina Suarez, and Catherine Paul at Lund University, and they have made a terrific job on this while I have mostly provided some input on the bioinformatics and genomics analyses. The study is a nice example of how genomics analysis could nuance monitoring for pathogens and antibiotic resistance in environments close to human activities. Since these sediments are also closely connected to humans in terms of exposure – the Helsingborg beach is in the neighbouring area – this highlight potential exposure routes for pathogens and antibiotic resistance (2).

The finding of a single antibiotic resistant isolate highlights the issue of comparing between different monitoring methods (2). While a single isolates might be consider a small number, it is really hard to compare if this is outside of the normal range of resistance (3) as measured by, e.g., qPCR. This further points to the importance of standardisation of antibiotic resistance monitoring in the environment, in a way that is both reliable, feasible and economic. That said, it also shows the potential in monitoring, for example, public beaches for pathogens and resistance, and how this could be used to better design and implement mitigation strategies, including the temporary closing of public beaches in contaminated areas. For this to work, however, a better knowledge of the background levels of resistance is required, as we have been working on in the EMBARK program.

References

  1. Erb IK, Suarez C, Frank EM, Bengtsson-Palme J, Lindberg E, Paul CJ: Escherichia coli in urban marine sediments: interpreting virulence, biofilm formation, halotolerance and antibiotic resistance to infer contamination or naturalisation. FEMS Microbes (advance article) xtae024 (2024). doi: 10.1093/femsmc/xtae024
  2. Bengtsson-Palme J, Abramova A, Berendonk TU, Coelho LP, Forslund SK, Gschwind R, Heikinheimo A, Jarquin-Diaz VH, Khan AA, Klümper U, Löber U, Nekoro M, Osińska AD, Ugarcina Perovic S, Pitkänen T, Rødland EK, Ruppé E, Wasteson Y, Wester AL, Zahra R: Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs? Environment International, 178, 108089 (2023). doi: 10.1016/j.envint.2023.108089
  3. Abramova A, Berendonk TU, Bengtsson-Palme J: A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. Environment International, 178, 108084 (2023). doi: 10.1016/j.envint.2023.108084