Category: EMBARK

Conferences this fall

Time to do a rundown of conferences and meetings I will attend this fall. Double-check with your calendars and please reach out if you’re also going, so we can meet up!

September 21-24: Nordic Society of Clinical Microbiology and Infectious Diseases (NSCMID), in Örebro, Sweden. I will give a talk about the EMBARK work in the Saturday session on Metagenomics in infection, inflammatory disease and the environment

October 5-6: Conference on ‘Optimal practices to protect human health care from antimicrobial resistance selected in the veterinary domain’ organised by The Netherlands Food and Consumer Product Safety Authority (NVWA) in Amsterdam, the Netherlands. I will chair a session on October 6 on Next generation sequencing for bioinformatic based surveillance.

October 18-22: 32º Congresso Brasileiro de Microbiologia, in Foz do Iguaçu, Brazil. I will give a talk in the Saturday session (the 21st) on the use of model systems all the way to global surveillance systems to prevent future pandemics.

November 15-16: DDLS Annual Meeting, in Stockholm Sweden. I am in the organising committee for this event with the theme “The emerging role of AI in data-driven life science”.

November 17: DDLS Cell and Molecular Biology Minisymposium.

November 29: GOTBIN Annual Workshop, in Gothenburg Sweden.

This will be a fun (but intense!) fall!

PhD position with Luis Pedro Coelho

I just want to point potential doctoral students’ attention to this fantastic opportunity to work with my EMBARK colleague Luis Pedro Coelho as he sets up his new lab in Brisbane in Australia at the relatively new Centre for Microbiome Research. Luis is looking for two PhD students, one who will focus on identifying and characterising the small proteins of the global microbiome and one more related to developing novel bioinformatic methods for studying microbial communities.

I can highly recommend this opportunity given that you are willing to move to Australia, as Luis is one of the most brilliant scientists I have worked with, is incredibly easy-going and fosters a lab culture I strong support. More information and application here.

Published papers: Environmental monitoring of antibiotic resistance

In just a few days, Environment International has published two papers coming out from the EMBARK consortium which are somewhat connected to each other.

The first (or technically the second, but the other order makes more sense when explaining this…) is the first paper involving most of the people who have been working in the EMBARK consortium for an extended period of time. It’s an overview paper titled “Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement Itit, and what are the data needs?(1) and I think the title describes the topic pretty well. Basically, we go through why it would be interesting to monitor for antibiotic resistance in the environments, how that could be implemented and what we would need to know to get there.

The very condensed story is that if one is considering implementing monitoring for environmental resistance, these are a few things that should be considered:

  • The purpose of monitoring: What is the motivation? What should be achieved? What type of risk should be assessed? What type of action would monitoring enable?
  • Choice of methods: Which methods are economically feasible? Which methods would deliver results within a useful timeframe for taking appropriate actions?
  • Targeted environments: In what type of environment would monitoring for a given purpose be worthwhile?
  • Intended users: Who would be able to use, implement and act upon this strategy?
  • Integration potential: How does this monitoring integrate with other monitoring efforts? How can the resulting data be communicated?

We then dive into the knowledge gaps we are currently facing, and particularly highlight the following areas:

  • Establish how different existing methods for monitoring resistance compare to each other
  • Extend pathogen-centric databases for resistance genes with latent resistance genes (2)
  • Determine the locations and type of environments relevant for resistance monitoring
    To reduce costs, utilizing already existing environmental monitoring should be prioritized, as should locations integrated into operating or planned surveillance programs. More efforts should also be made to identify additional pathways for resistance transmission through the environment.
  • Study the environment as a source and transmission route for antibiotic resistance
    Stratify risks associated with resistance genes found in the environment. Define typical levels of antibiotic resistance in different environments (3), and define how these levels change over time.
  • Identify settings where the relationship between fecal bacteria and antibiotic resistance is absent
    Usually, these levels follow each other, but the environments where they don’t are important as they deviate from the expected baseline of resistance. This knowledge can aid in identifying situations in which it would be helpful to investigate a microbial community for resistance to specific antibiotics.
  • Identify the origins for more antibiotic resistance genes (4)
    This knowledge will be instrumental in preventing the emergence of new forms of resistance in pathogens in the future.

An important outcome of this paper is that we realise that we are still not at a level of understanding where routine monitoring for resistance in the environment can be easily justified or implemented. Still, there is a need for monitoring data in natural environments to even get started, and therefore we support the implementation of national, regional and global of initiatives without having all the scientific answers. The lack of comprehensive understanding should not be an obstacle to starting environmental monitoring for AMR, nor for action against environmental development and spread of AMR.

The second paper is very much related to the first, in that it actually tries to address one of these knowledge gaps: the need for normal background levels of antibiotic resistance in different environments. In this paper, Anna Abramova did an herculean effort collecting (we hope) all qPCR data on antibiotic resistance gene abundances in the environment for the past two decades. All in all, she collected data for more than 1500 samples across 150 studies and integrated these into an analys of what we could consider normal levels of resistance in different environments.

For an ‘average’ resistance gene, we found that the normal relative abundance range was form 10-5 to 10-3 copies per bacterial 16S rRNA, or that around one in 1,000 bacteria would carry a given resistance gene. This level varied quite a bit between different resistance genes, however, but not so much between environmental types (except for in human and animal feces, where some resistance genes were clearly more abundant, most prominently tetracycline resistance genes). What was more striking was that there was a clear difference between environments impacted or likely impacted by human activities, as opposed to more pristine environments with little to none human impact. Some resistance genes, such as tetA, tetG, blaTEM and blaCTX-M, showed very marked differences between these impacted and non-impacted environments, making them great markers of human-activity-associated resistance.

Our final recommendations with regards to monitoring include:

  • Include the intI1, sul1, blaTEM, blaCTX-M and qnrS genes in environmental monitoring, along with a selection of tetracycline resistance genes, including either tetA or tetG.
  • Other potential target genes could be sul3, vanA, tetH, aadA2, floR, ereA and mexF, which are abundant in some environments, but are not often included in qPCR studies of environmental AMR
  • If a gene deviates from the expected 10-5 to 10-3 interval, this warrants further investigation of the causes.
  • Maximum acceptable levels need to be determined not only taking relative abundances of genes into account, but also risks to human health as well as the numbers of bacteria in a given volume of sample into account (5,6) and transmission routes to humans (7)
  • The different standards of reporting DNA abundances constituted a complicating factor for this study. Both abundances of resistance genes relative to the 16S rRNA gene and to the sample volume or weight should be reported.
  • The absence of clear trends of increases or decreases in resistance gene abundances over time indicates a need for more systematic time series data in a variety of environments.

Our results also highlighted the scarcity of resistance gene data from parts of the world, particularly from Africa and South America, and underscores the need for a concerted effort to quantify typical background levels of resistance in the environment more broadly to enable efficient environmental surveillance schemes akin to those that exist in clinical and veterinary settings.

I encourage anyone with an interesting these topics to at least skim the full papers [Monitoring overview paper here, Normal qPCR resistance abundances here]. These will be great resources and I am very proud of them both. I would really like to thank the entire EMBARK team and our collaborators in CORNELIA, WastPAN and in other organisations. I would also like to thank Anna for her hard work on collecting and analysing the qPCR data for around two years. It has been a long ride, and I think we are both happy, proud and a bit relieved to finally see this paper published!


  1. Bengtsson-Palme J, Abramova A, Berendonk TU, Coelho LP, Forslund SK, Gschwind R, Heikinheimo A, Jarquin-Diaz VH, Khan AA, Klümper U, Löber U, Nekoro M, Osińska AD, Ugarcina Perovic S, Pitkänen T, Rødland EK, Ruppé E, Wasteson Y, Wester AL, Zahra R: Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs? Environment International, 108089 (2023). doi: 10.1016/j.envint.2023.108089
  2. Inda-Díaz JS, Lund D, Parras-Moltó M, Johnning A, Bengtsson-Palme J, Kristiansson E: Latent antibiotic resistance genes are abundant, diverse, and mobile in human, animal, and environmental microbiomes. Microbiome, 11, 44 (2023). doi: 10.1186/s40168-023-01479-0
  3. Abramova A, Berendonk TU, Bengtsson-Palme J: A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. Environment International, 178, 108084 (2023). doi: 10.1016/j.envint.2023.108084
  4. Ebmeyer S, Kristiansson E, Larsson DGJ: A framework for identifying the recent origins of mobile antibiotic resistance genes. Communications Biology, 4 (2021). doi:10.1038/s42003-020-01545-5
  5. Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel A, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S: Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 117, 132–138 (2018). doi: 10.1016/j.envint.2018.04.041
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121, 878–885 (2013). doi:10.1289/ehp.1206446
  7. Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42, 1, 68–80 (2018). doi: 10.1093/femsre/fux053

Published paper: The latent resistome

What is the latent resistome? This is a term we coin in a new paper published yesterday in Microbiome. In the paper, we distinguish between the small number antibiotic resistance genes (ARGs) that are established, well-characterized, and available in existing resistance gene databases (what we refer to as “established ARGs”). These are typically ARGs encountered in clinical pathogens and are often already causing problems in human and animal infections. The remaining latently present ARGs, which we denote “latent ARGs”, are less or not at all studied, and are therefore much harder to detect (1). These latent ARGs are typically unknown and generally overlooked in most studies of resistance. They are also seldom accounted for in risk assessments of antibiotic resistance (2-4). This means that our view of the resistome and its diversity is incomplete, which hampers our ability to assess risk for promotion and spread of yet undiscovered resistance determinants.

In our new study, we try to alleviate this issue by analyzing more than 10,000 metagenomic samples. We show that the latent ARGs are more abundant and diverse than established ARGs in all studied environments, including the human- and animal-associated microbiomes. The total pan-resistomes, i.e., all ARGs present in an environment (including the latent ARGs), are heavily dominated by these latent ARGs. In contrast, the core resistome (the ARGs that are commonly encountered) comprise both latent and established ARGs.

In the study, we identified several latent ARGs that were shared between environments or that are already present in human pathogens. These are often located on mobile genetic elements that can be transferred between bacteria. Finally, we also show that wastewater microbiomes have surprisingly large pan- and core-resistomes, which makes this environment a potent high-risk environment for mobilization and promotion of latent ARGs, which may make it into pathogens in the future.

It is also interesting to note that this new study echoes the results of my own study from 2018, showing that soil and water environments contain a high diversity of latent ARGs (or ARGs not found in pathogens as I put it in the 2018 study), despite being almost devoid of established ARGs (5).

This project has been a collaboration with Erik Kristiansson’s research group, and particularly with Juan Inda-Diáz. It has been great fun to work with them and I hope that we will keep this collaboration going into the future! The study can be read in its entirety here.


  1. Inda-Díaz JS, Lund D, Parras-Moltó M, Johnning A, Bengtsson-Palme J, Kristiansson E: Latent antibiotic resistance genes are abundant, diverse, and mobile in human, animal, and environmental microbiomes. Microbiome, 11, 44 (2023). doi: 10.1186/s40168-023-01479-0 [Paper link]
  2. Martinez JL, Coque TM, Baquero F: What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology 2015, 13:116–123. doi:10.1038/nrmicro3399
  3. Bengtsson-Palme J, Larsson DGJ: Antibiotic resistance genes in the environment: prioritizing risks. Nature Reviews Microbiology, 13, 369 (2015). doi: 10.1038/nrmicro3399-c1
  4. Bengtsson-Palme J: Assessment and management of risks associated with antibiotic resistance in the environment. In: Roig B, Weiss K, Thoreau V (Eds.) Management of Emerging Public Health Issues and Risks: Multidisciplinary Approaches to the Changing Environment, 243–263. Elsevier, UK (2019). doi: 10.1016/B978-0-12-813290-6.00010-X
  5. Bengtsson-Palme J: The diversity of uncharacterized antibiotic resistance genes can be predicted from known gene variants – but not always. Microbiome, 6, 125 (2018). doi: 10.1186/s40168-018-0508-2

Published report: UNEP One Health AMR response

UNEP last week published their report on one health responses to antimicrobial resistance (1), which I have taken part in writing (well, I think I ultimately only contributed a few sentences here and there, but apparently that counts to be listed among the report’s contributors). The report, named “Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance” showcases the evidence for that the environment plays a key role in the development, transmission and spread of AMR.

The report tries to unpack the different aspects of environmental AMR, and offers a fairly comprehensive picture of where the science stands on the subject. We also conclude that a systems effort – “One Health” – recognizing that the health of people, animals, plants and the environment are closely connected, is needed to tackle AMR.

This report analyzes the three economic sectors and their value chains that are key drivers of AMR development and spread in the environment: pharmaceuticals and other chemicals, agriculture including the food chain, and healthcare, together with pollutants from poor sanitation, sewage and waste effluent in municipal systems.

I am very happy to have been part of this report writing team and I hope that this will spur future action on AMR from a one-health perspective. You can read the entire report here.


  1. United Nations Environment Programme (2023). Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance. Geneva

Welcome Vi and Marcus

I am very happy to share with you that our two doctoral students funded by the Wallenberg DDLS initiative have now started. One of them – Marcus Wenne – is already a well-known figure in the lab, as he has been with us as a master student and then as a bioinformatician for more than a year. The other student – Vi Varga – is a completely new face in the lab and just started yesterday.

Marcus will work in a project on global environmental AMR. He will also continue on his work on large-scale metagenomics to understand community dynamics and antibiotic resistance selection in microbial communities subjected to antibiotics selection. Marcus will work very closely to EMBARK and continue the important work we have done in that project over the next four years.

Vi will study responses of microbial communities to change, with a particular focus on comparative genomics and transcriptional approaches. We will link this to both community stability, pathogenesis and resistance to antibiotics, so this project involves a little bit of everything in terms of the lab’s research interests. Vi’s background is in comparative genomics and pathogenesis, so this seems to be the perfect mix to be able to carry out this project successfully!

Very welcome to the lab Marcus and Vi! We look forward to work with you for the next four years or so!

Einhorn SIGHT Award

It’s been a busy couple of days at the DDLS Annual Meeting, so I did not have the time to post about this exciting news yesterday, but it is very exciting nonetheless.

I have been selected by the board of the Royal Swedish Academy of Sciences as the 2022 recipient of the Einhorn SIGHT award. The award recognizes outstanding global health research work by young researchers in the context of low- and middle-income countries, and specifically I have been selected thanks to my “outstanding research and development of tools to limit the global challenge of infectious diseases and antibiotic resistance.”

In a global health context, what is particularly important in the coming years is improved access to clean water and sewage systems. In addition, we also need to develop data-driven systems that can be used to implement easy-to-handle, inexpensive early warning systems and risk models for antibiotic-resistant bacteria, which we hope will be the outcome of the EMBARK program.

Clearly, a large part of this is the result of the work the entire EMBARK team has put together in the past couple of years. Another big part has been the work I have done together with Joakim Larsson in the area of antibiotic resistance in the environment. I am deeply grateful both to Joakim and my EMBARK collaborators for their contributions towards this award. Science is a teamwork, and it is a bit of a pity that we celebrate individuals to the extent we do (even though the recognition of my contribution of course is nice for me personally). Thanks to everyone who have been involved over the years!

There will be an award ceremony at the Royal Academy of Sciences on November 22, as part of a very nice event on Global Health, with the theme ‘Food Safety in conflict’. You can read a short interview I did in relation to the award here.

In other notes, I was also selected as one of Clarivate as one of this year’s Highly Cited Researchers (for the third year in a row!) This is of course also exciting news, although the most important aspect of that is that it shows that the research we do is useful to others!

Published paper: Modeling antibiotic resistance gene emergence

Last week, a paper resulting from a collaboration with Stefanie Heß and Viktor Jonsson was published in Environmental Science & Technology. In the paper, we build a quantitative model for the emergence of antibiotic resistance genes in human pathogens and populate it using the few numbers that are available on different processes (bacterial uptake, horizontal gene transfer rates, rate of mobilization of chromosomal genes, etc.) in the literature (1).

In short, we find that in order for the environment to play an important role in the appearance of novel resistance genes in pathogens, there needs to be a substantial flow of bacteria from the environment to the human microbiome. We also find that most likely the majority of resistance genes in human pathogens have very small fitness costs associated with them, if any cost at all.

The model makes three important predictions:

  1. The majority of ARGs present in pathogens today should have very limited effects on fitness. The model caps the average fitness impact for ARGs currently present in human pathogens between −0.2 and +0.1% per generation. By determining the fitness effects of carrying individual ARGs in their current hosts, this prediction could be experimentally tested.
  2. The most likely location of ARGs 70 years ago would have been in human-associated bacteria. By tracking ARGs currently present in human pathogens across bacterial genomes, it may be possible to trace the evolutionary history of these genes and thereby identify their likely hosts at the beginning of the antibiotic era, similar to what was done by Stefan Ebmeyer and his colleagues (2). What they found sort-of corroborate the findings of our model and lend support to the idea that most ARGs may not originate in the environment. However, this analysis is complicated by the biased sampling of fully sequenced bacterial genomes, most of which originate from human specimens. That said, the rapid increase in sequencing capacity may make full-scale analysis of ARG origins using genomic data possible in the near future, which would enable testing of this prediction of the model.
  3. If the origins of ARGs currently circulating in pathogens can be established, the range of reasonable dispersal ability levels from the environment to pathogens narrows dramatically. Similarly, if the rates of mobilization and horizontal transfer of resistance genes could be better determined by experiments, the model would predict the likely origins more precisely. Just establishing a ball-park range for the mobilization rate would dramatically restrict the possible outcomes of the model. Thus, a more precise determination of any of these parameters would enable several more specific predictions by the model.

This paper has a quite interesting backstory, beginning with me having leftover time on a bus ride in Madison (WI), thinking about whether you could quantize the conceptual framework for resistance gene emergence we described in our 2018 review paper in FEMS Reviews Microbiology (3). This spurred the first attempt at such a model, which then led to Stefanie Heß and me applying for support from the Centre for Antibiotic Resistance Research at the University of Gothenburg (CARe) to develop this idea further. We got this support and Stefanie spent a few days with me in Gothenburg developing this idea into a model we could implement in R.

However, at that point we realized we needed more modeling expertise and brought in Viktor Jonsson to make sure the model was robust. From there, it took us about 1.5 years to refine and rerun the model about a million times… By the early spring this year, we had a reasonable model that we could write a manuscript around, and this is what now is published. It’s been an interesting and very nice ride together with Stefanie and Viktor!


  1. Bengtsson-Palme J, Jonsson V, Heß S: What is the role of the environment in the emergence of novel antibiotic resistance genes? A modelling approach. Environmental Science & Technology, Article ASAP (2021). doi: 10.1021/acs.est.1c02977 [Paper link]
  2. Ebmeyer S, Kristiansson E, Larsson DGJ: A framework for identifying the recent origins of mobile antibiotic resistance genes. Communications Biology 4 (2021). doi: 10.1038/s42003-020-01545-5
  3. Bengtsson-Palme J, Kristiansson E, Larsson DGJ: Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42, 1, 68–80 (2018). doi: 10.1093/femsre/fux053 [Paper link]

More podcasting: The AMR Studio

Not only did we release the most recent episode of the lab’s podcast this weekend. Today, the episode of The AMR Studio where I’m interviewed by Eva Garmendia of the Uppsala Antibiotic Center was put online. We talk mostly about antibiotic resistance in the environment and the role that the EMBARK program can play in mitigating environmental resistance. I think it’s a nice listen (recorded in the beautiful world pre-covid-19). Find it where you find podcasts (e.g. Apple or Spotify).

And like that, the world had changed

I guess it hasn’t passed anyone by that we are under a global lockdown (although to very different degrees – Sweden, where we’re based, has a pretty relaxed attitude to quarantining people (1), so it could be worse for us, I guess). In any case, the novel coronavirus has forced the lab to largely work from home and has upended essentially all my plans for this spring, expect for writing grant applications (which I have done a lot).

First of all, I want to thank my fellow lab members for holding out strongly in these trying times. They have consistently shown that they are the best co-workers I could ask for, and have kept calm even when anxiety hits. Thanks a lot for that. I also would like to thank the university for providing rather clear guidance on how to handle different issues that come up in these time of crisis.

With that said, I am also sad to say that there will not be a Microbiome & Probiotics Collaboration Forum in Rotterdam on May 18-20. Instead that meeting has been postponed to early December. Similarly, I will not be in Helsinki next week to talk about EMBARK. That workshop will instead, hopefully, take place on August 28. And the same story goes for the NordicMappingAMR organised by the Swedish Medical Products Agency, which will take place at a later date (I am not sure exactly when this is planned yet).

These are trying times for all of us. I hope that you stay healthy and take care of your loved ones – particularly the elderly, but not unnecessarily visiting them. My grandparents (aged 93 and 95) have started FaceTiming us, so I guess some good things come out of this mess as well. We will come out of this crisis stronger, eventually.


  1. There are many things I could say about the Swedish strategy regarding covid-19, but this is not really the forum. In very brief, though, I have quite some faith in that the Swedish Public Health Agency is doing a decent job. Mistakes have been made (particularly early in the pandemic) and I am slightly anxious whether the Swedish strategy will play out as well as in other countries in Northern Europe, but right now data suggest that we are doing reasonable fine. I might return to this issue in another post if time permits.