Category: Papers

Polluted lake paper in final form

Our paper describing the bacterial community of a polluted lake in India has now been typeset and appears in its final form in Frontiers in Microbiology. If I may say so, I think that the paper turned out to be very goodlooking and it is indeed nice to finally see it in print. The paper describes an unprecedented diversity and abundance of antibiotic resistance genes and genes enabling transfer of DNA between bacteria. We also describe a range of potential novel plasmids from the lake. Finally, the paper briefly describes a new approach to targeted assembly of metagenomic data — TriMetAss — which can be downloaded here.

Reference:
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648

TriMetAss – A Trinity-based targeted metagenomics assembler

With the publication of my latest paper last week (1), I also would like to highlight some of the software underpinning the findings a bit. To get around the problem that extremely common resistance genes could be present in multiple contexts and variants, causing assembler such as Velvet (2) to perform sub-optimally, we have written a software tool that utilizes Vmatch (3) and Trinity (4) to iteratively construct contigs from reads associated with resistance genes. This could of course be used in many other situations as well, when you want to specifically assemble a certain portion of a metagenome, but suspect that that portion might be found in multiple contexts.

TriMetAss is a Perl program, employing Vmatch and Trinity to construct multi-context contigs. TriMetAss uses extracted reads associated with, e.g., resistance genes as seeds for a Vmatch search against the complete set of read pairs, extracting reads matching with at least 49 bp (by default) to any of the seed reads. These reads are then assembled using Trinity. The resulting contigs are then used as seeds for another search using Vmatch to the complete set of reads, as above. All matches (including the previously matching read pairs) are again then used for a Trinity assembly. This iterative process is repeated until a stop criteria is met, e.g. when the total number of assembled nucleotides starts to drop rather than increase. The software can be downloaded here.

References:

  1. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648
  2. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–829 (2008). doi:10.1101/gr.074492.107
  3. Kurtz S: The Vmatch large scale sequence analysis software (2010). http://vmatch.de/
  4. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644–652 (2011). doi:10.1038/nbt.1883

Published paper: Antibiotic resistance genes in a polluted lake

The first work in which I have employed metagenomics to investigate antibiotic resistance has been accepted in Frontiers in Microbiology, and is (at the time of writing) available as a provisional PDF. In the paper (1), which is co-authored by Fredrik Boulund, Jerker Fick, Erik Kristiansson and Joakim Larsson, we have used shotgun metagenomic sequencing of an Indian lake polluted by dumping of waste from pharmaceutical production. We used this data to describe the diversity of antibiotic resistance genes and the genetic context of those, to try to predict their genetic transferability. We found resistance genes against essentially every major class of antibiotics, as well as large abundances of genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant in the polluted lake than in a Swedish lake included for comparison, where only eight resistance genes were found. The abundances of resistance genes have previously only been matched by river sediment subject to pollution from pharmaceutical production (2). In addition, we describe twenty-six known and twenty-one putative novel plasmids from the Indian lake metagenome, indicating that there is a large potential for horizontal gene transfer through conjugation. Based on the wide range and high abundance of known resistance factors detected, we believe that it is plausible that novel resistance genes are also present in the lake. We conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. This work further highlights previous findings that pharmaceutical production settings could provide sufficient selection pressure from antibiotics (3) to drive the development of multi-resistant bacteria (4,5), resistance which may ultimately end up in pathogenic species (6,7). The paper can be read in its entirety here.

References:

  1. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, Volume 5, Issue 648 (2014). doi: 10.3389/fmicb.2014.00648
  2. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ: Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, Volume 6, e17038 (2011). doi:10.1371/journal.pone.0017038.
  3. Larsson DGJ, de Pedro C, Paxeus N: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater, Volume 148, 751–755 (2007). doi:10.1016/j.jhazmat.2007.07.008
  4. Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ERB, Larsson DGJ, Shouche YS: A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria. PLoS ONE, Volume 8, e77310 (2013). doi:10.1371/journal.pone.0077310
  5. Johnning A, Moore ERB, Svensson-Stadler L, Shouche YS, Larsson DGJ, Kristiansson E: Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl Environ Microbiol, Volume 79, 7256–7263 (2013). doi:10.1128/AEM.02141-13
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR., et al.: Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect, Volume 121, 878–885 (2013). doi:10.1289/ehp.1206446
  7. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, Volume 57, 704–710 (2013). doi:10.1093/cid/cit355

Published paper: Is ITS1 a better barcode than ITS2?

Another paper I have made a contribution to have just recently been published in Molecular Ecology Resources. The paper (1), which is lead-authored by Xin-Cun Wang and Chang Liu at the Institute of Medicinal Plant Development in Beijing, investigates the usability of the ITS1 and ITS2 as separate barcodes across the Eukaryotes. The study is a large scale meta-analysis comparing available high-quality sequence data in as many taxonomic groups at possible from three different aspects: PCR amplification, DNA sequencing efficiency and species discrimination ability. Specifically, we have looked for the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality, using bioinformatic approaches. We found that the ITS1 had significantly higher efficiencies than the ITS2 in 17 of 47 families and 20 of 49 investigated genera, which was markedly better than the performance of ITS2. We conclude that, in general, ITS1 represents a better DNA barcode than ITS2 for a majority of eukaryotic taxonomic groups. This of course doesn’t mean that using the ITS2 or the ITS region in its entirety should be dismissed, but our results can serve as a ground for making informed decisions about which region to choose for your amplicon sequencing project. The results complement what have previously been observed for e.g. fungi, where the difference between ITS1 and ITS2 were much less pronounced (2).

References:

  1. Wang X-C, Liu C, Huang L, Bengtsson-Palme J, Chen H, Zhang J-H, Cai D, Li J-Q: ITS1: A DNA barcode better than ITS2 in eukaryotes? Molecular Ecology Resources. Early view. doi: 10.1111/1755-0998.12325 [Paper link]
  2. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H: ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources. Volume 13, Issue2, Page 218-224. doi: 10.1111/1755-0998.12065 [Paper link]

Published paper: Detoxification genes in marine bacteria

I just got word from BMC Genomics that my most recent paper has just been published (in provisional form; we still have not seen the edited proofs). In this paper (1), which I have co-authored with Anders Blomberg, Magnus Alm Rosenblad and Mikael Molin, we utilize metagenomic data from the GOS-expedition (2) together with fully sequenced bacterial genomes to show that:

  1. Detoxification genes in general are underrepresented in marine planktonic bacteria
  2. Surprisingly, the detoxification that show a differential distribution are more abundant in open ocean water than closer to the coast
  3. Peroxidases and peroxiredoxins seem to be the main line of defense against oxidative stress for bacteria in the marine milieu, rather than e.g. catalases
  4. The abundance of detoxification genes does not seem to increase with estimated pollution.

From this we conclude that other selective pressures than pollution likely play the largest role in shaping marine planktonic bacterial communities, such as for example nutrient limitations. This suggests substantial streamlining of gene copy number and genome sizes, in line with observations made in previous studies (3). Along the same lines, our findings indicate that the majority of marine bacteria would have a low capacity to adapt to increased pollution, which is relevant as large amounts of human pollutants and waste end up in the oceans every year. The study exemplifies the use of metagenomics data in ecotoxicology, and how we can examine anthropogenic consequences on life in the sea using approaches derived from genomics. You can read the paper in its entirety here.

References:

  1. Bengtsson-Palme J, Alm Rosenblad M, Molin M, Blomberg A: Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics. Volume 15, Issue 749 (2014). doi: 10.1186/1471-2164-15-749 [Paper link]

  2. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, Van Belle C, Chandonia J-M, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, et al: The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biology. 5:e16 (2007).
  3. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson KY, Williamson SJ, Tovchigrechko A, Allen AE, Zeigler LA, Sutton G, Eisenstadt E, Rogers Y-H, Friedman R, Frazier M, Venter JC: Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature. 468:60–66 (2010).

Scientific Data – a way of getting credit for data

In an interesting development, Nature Publishing Group has launched a new initiative: Scientific Data – a online-only open access journal that publishes data sets without the demand of testing scientific hypotheses in connection to the data. That is, the data itself is seen as the valuable product, not any findings that might result from it. There is an immediate upside of this; large scientific data sets might be accessible to the research community in a way that enables proper credit for the sample collection effort. Since there is no demand for a full analysis of the data, the data itself might quicker be of use to others, without worrying that someone else might steal the bang of the data per se. I also see a possible downside, though. It would be easy to hold on to the data until you have analyzed it yourself, and then release it separately just about when you submit the paper on the analysis, generating extra papers and citation counts. I don’t know if this is necessarily bad, but it seems it could contribute to “publishing unit dilution”. Nevertheless, I believe that this is overall a good initiative, although how well it actually works will be up to us – the scientific community. Some info copied from the journal website:

Scientific Data’s main article-type is the Data Descriptor: peer-reviewed, scientific publications that provide an in-depth look at research datasets. Data Descriptors are a combination of traditional scientific publication content and structured information curated in-house, and are designed to maximize reuse and enable searching, linking and data mining. (…) Scientific Data aims to address the increasing need to make research data more available, citable, discoverable, interpretable, reusable and reproducible. We understand that wider data-sharing requires credit mechanisms that reward scientists for releasing their data, and peer evaluation mechanisms that account for data quality and ensure alignment with community standards.

Published paper: Distributed annotation of plant pathogenic fungi

Another paper I have co-authored related to the UNITE database for fungal rDNA ITS sequences is now published as an Online Early article in Fungal Diversity. The paper describes an effort to improve the annotation of ITS sequences from fungal plant pathogens. Why is this important? Well, apart from fungal plant pathogens being responsible for great economic losses in agriculture, the paper is also conceptually important as it shows that together we can accomplish a substantial improvement to the metadata in sequence databases. In this work we have hunted down high-quality reference sequences for various plant pathogenic fungi, and re-annotated incorrectly or insufficiently annotated ITS sequences from the same fungal lineages. In total, the 59 authors have made 31,954 changes to UNITE database data, on average 540 changes per author. While one, or a few, persons could not feasibly have made this effort alone, this work shows that in larger consortia vast improvements can be made to the quality of databases, by distributing the work among many scientists. In many ways, this relates to proposals to “wikify” GenBank, and after Rfam and Pfam it might now be time to take the user-contribution model to, at least, the RefSeq portion of GenBank, which despite its description as being “comprehensive, integrated, non-redundant, [and] well-annotated” still contains errors and examples of non-usable annotation. More on that at a later point…

Paper reference:

Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L, Aas AB, Alias SA, Alves A, Anderson CL, Antonelli A, Arnold AE, Bahnmann B, Bahram M, Bengtsson-Palme J, Berlin A, Branco S, Chomnunti P, Dissanayake A, Drenkhan R, Friberg H, Frøslev TG, Halwachs B, Hartmann M, Henricot B, Jayawardena R, Jumpponen A, Kauserud H, Koskela S, Kulik T, Liimatainen K, Lindahl B, Lindner D, Liu J-K, Maharachchikumbura S, Manamgoda D, Martinsson S, Neves MA, Niskanen T, Nylinder S, Pereira OL, Pinho DB, Porter TM, Queloz V, Riit T, Sanchez-García M, de Sousa F, Stefaczyk E, Tadych M, Takamatsu S, Tian Q, Udayanga D, Unterseher M, Wang Z, Wikee S, Yan J, Larsson E, Larsson K-H, Kõljalg U, Abarenkov K: Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity Online early (2014). doi: 10.1007/s13225-014-0291-8 [Paper link]

Published paper: BacMet Database

It seems like our paper on the recently launched database on resistance genes against antibacterial biocides and metals (BacMet) has gone online as an advance access paper in Nucleic Acids Research today. Chandan Pal – the first author of the paper, and one of my close colleagues as well as my roommate at work – has made a tremendous job taking the database from a list of genes and references, to a full-fledged browsable and searchable database with a really nice interface. I have contributed along the process, and wrote the lion’s share of the code for the BacMet-Scan tool that can be downloaded along with the database files.

BacMet is a curated source of bacterial resistance genes against antibacterial biocides and metals. All gene entries included have at least one experimentally confirmed resistance gene with references in scientific literature. However, we have also made a homology-based prediction of genes that are likely to share the same resistance function (the BacMet predicted dataset). We believe that the BacMet database will make it possible to better understand co- and cross-resistance of biocides and metals to antibiotics within bacterial genomes and in complex microbial communities from different environments.

The database can be easily accessed here: http://bacmet.biomedicine.gu.se, and use of the database in scientific work can cite the following paper, which recently appeared in Nucleic Acids Research:

Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ: BacMet: Antibacterial Biocide and Metal Resistance Genes Database. Nucleic Acids Research. Database issue, advance access. doi: 10.1093/nar/gkt1252 [Paper link]

ITSx paper in MEE issue 4.10

I am happy to inform you that our paper on ITSx now is out online in Methods in Ecology and Evolution issue 4.10. Meanwhile, I am slowly getting my stuff together on an update that will bring some minor requested features. The publication brings the proper citation of the ITSx paper to be:

Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez-García, M., Ebersberger, I., de Sousa, F., Amend, A. S., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., Veldre, V., Nilsson, R. H. (2013), Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4: 914–919. doi: 10.1111/2041-210X.12073

Regarding ResearchGate and paper requests

I have recently started to receive requests for full-text versions of my publications on ResearchGate. That’s great, but I have yet to figure out how to send them over, without breaking any agreements. As I am in a somewhat intensive work-period at the moment, please forgive me for not spending time on ResearchGate right now. And if you would like full-text versions of my publications, please send me an e-mail! I’ll be glad to help!