Tag: DNA sequencing

Published paper: Towards unified ITS-based identification of Fungi

Our paper on the most recent developments of the UNITE database for fungal rDNA ITS sequences has just been published as an Early view article in Molecular Ecology. In this paper, we aim to ease two of the major problems facing the identification of newly generated fungal ITS sequences: the lack of a sufficiently goof reference dataset, and the lack of a way to refer to fungal species without a Latin name. As part of a solution, we have introduced the term species hypothesis for all fungal species represented by at least two ITS sequences. The UNITE database has an easy-to-use web-based sequence management system, and we encourage everybody that can improve on the annotations or metadata of a fungal lineage to do so.

My main contribution on this paper has been to tailor ITSx functionality for the UNITE database, so that ITS data could be more easily processed for the Species Hypotheses.

Paper reference:
Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TT, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Senés C, Smith ME, Suija A, Taylor DE, Telleria MT, Weiß M, Larsson KH: Towards a unified paradigm for sequence-based identification of Fungi. Accepted in Molecular Ecology. doi: 10.1111/mec.12481 [Paper link]

Published paper: ITSx

The paper describing our software tool ITSx has now gone online as an Early View paper on the Methods in Ecology and Evolution website. The software just recently left its beta-status behind, and with the paper out as well, we hope that as many people as possible will find use for the software in barcoding efforts of the ITS region. If you’re not familiar with the software – or its predecessor; the fungal ITS Extractor – here is a brief description of what it does:

ITSx is a Perl-based software tool that extracts the ITS1, 5.8S and ITS2 sequences – as well as full-length ITS sequences – from high-throughput sequencing data sets. To achieve this, we use carefully crafted hidden Markov models (HMMs), computed from large alignments of a total of 20 groups of eukaryotes. Testing has shown that ITSx has close to 100% detection accuracy, and virtually zero false-positive extractions. Additionally, it supports multiple processor cores, and is therefore suitable for running also on very large datasets. It is also able to eliminate non-ITS sequences from a given input dataset.

While ITSx supports extractions of ITS sequences from at least 20 different eukaryotic lineages, we ourselves have considerably less experience with many of the eukaryote groups outside of the fungi. We therefore release ITSx with the intent that the research community will evaluate its performance also in other parts of the eukaryote tree, and if necessary contribute data required to address also those lineages in a thorough way.

The ITSx paper can at the moment be cited as:
Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez-García, M., Ebersberger, I., de Sousa, F., Amend, A. S., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., Veldre, V., Nilsson, R. H. (2013), Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution. doi: 10.1111/2041-210X.12073

ITSx – a software tool for detection and extraction of ITS1 and ITS2 sequences

For a couple of years, I have been working with microbial ecology and diversity, and how such features can be assessed using molecular barcodes, such as the SSU (16S/18S) rRNA sequence (the Metaxa and Megraft packages). However, I have also been aiming at the ITS region, and how that can be used in barcoding (see e.g. the guidelines we published last year). It is therefore a great pleasure to introduce my next gem for community analysis; a software tool for detection and extraction of the ITS1 and ITS2 regions of ITS sequences from environmental communities. The tool is dubbed ITSx, and supersedes the more specific fungal ITS extractor written by Henrik Nilsson and colleagues. Henrik is once more the mastermind behind this completely rewritten version, in which I have done the lion’s share of the programming. Among the new features in ITSx are:

  • Robust support for the Cantharellus, Craterellus, and Tulasnella genera of fungi
  • Support for nineteen additional eukaryotic groups on top of the already present support for fungi (specifically these groups: Tracheophyta (vascular plants), Bryophyta (bryophytes), Marchantiophyta (liverworts), Chlorophyta (green algae), Rhodophyta (red algae), Phaeophyceae (brown algae), Metazoa (metazoans), Oomycota (oomycetes), Alveolata (alveolates), Amoebozoa (amoebozoans), Euglenozoa, Rhizaria, Bacillariophyta (diatoms), Eustigmatophyceae (eustigmatophytes), Raphidophyceae (raphidophytes), Synurophyceae (synurids), Haptophyceae (haptophytes) , Apusozoa, and Parabasalia (parabasalids))
  • Multi-processor support
  • Extensive output options
  • Virtually zero false-positive extractions

ITSx is today moved from a private pre-release state to a public beta state. No code changes has been made since February, indicative of that the last pre-release candidate is now ready to fly on its own. As far as our testing has revealed, this version seems to be bug free. In reality though, researchers tend to find the most unexpected usage scenarios. So please, if you find any unexpected behavior in this version of ITSx, send me an e-mail and make us aware of the potential shortcomings of our software.

We expect this open-source software to boost research in microbial ecology based on barcoding of the ITS region, and hope that the research community will evaluate its performance also among the eukaryote groups that we have less experience with.

PETKit updated – Critical bug fix

Some good and some bad news regarding the PETKit. Good news first; I have written a fourth tool for the PETKit, which is included in the latest release (version 1.0.2b, download here). The new tool is called Pesort, and sorts input read pairs (or single reads) so that the read pairs occur in the same order. It also sorts out which reads that don’t have a pair and outputs them to a separate file. All this is useful if you for some reason have ended up with a scrambled read file (pair). This can e.g. happen if you want to further process the reads after running Khmer or investigate the reads remaining after mapping to a genome.

Then the bad news. There’s a critical bug in PETKit version 1.0.1b. This bug manifest itself when using custom offsets for quality scores (using the –offset option), and makes the Pearf and Pepp tools too strict – leading to that they discard reads that actually are of good quality. This does not affect the Pefcon program. If you use the PETKit for read filtering or ORF prediction, and have used custom offset values, I recommend that you re-run your data with the newly released PETKit version (1.0.2b), in which this bug has been fixed. If you have only used the default offset setting, your safe. I sincerely apologize for any inconveniences that this might have caused.

Introducing the PETKit

You know the feeling when your assembler supports paired-end sequences, but your FASTQ quality filterer doesn’t care about what pairs that belong together? Meaning that you end up with a mess of sequences that you have to script together in some way. Gosh, that feeling is way too common. It is for situations like that I have put together the Paired-End ToolKit (PETKit), a collection of FASTQ/FASTA sequence handling programs written in Perl. Currently the toolkit contains three command-line tools that does sequence conversion, quality filtering, and ORF prediction, all adapted for paired-end sequences specifically. You can read more about the programs, which are released as open source software, on the PETKit page. At the moment they lack proper documentation, but running the software with the “–help” option should bring up a useful set of options for each tool. This is still considered beta-software, so any bug reports, and especially suggestions, are welcome.

Also, if you have an idea of another problem that is unsolved or badly executed for paired-end sequences, let me know, and I will see if I can implement it in PETKit.

Published paper: Guidelines for DNA quality checking

I have co-authored a paper together with, among others, Henrik Nilsson that was published today in MycoKeys. The paper deals with checking quality of DNA sequences prior to using them for research purposes. In our opinion, a lot of the software available for sequence quality management is rather complex and resource intensive. Not everyone have the skills to master such software, and in addition computational resources might also be scarce. Luckily, there’s a lot that can be done in quality control of DNA sequences just using manual means and a web browser. This paper puts these means together into one comprehensible and easy-to-digest document. Our targeted audience is primaily biologists who do not have a strong background in computer science, and still have a dataset requiring DNA sequence quality control.

We have chosen to focus on the fungal ITS barcoding region, but the guidelines should be pretty general and applicable to most groups of organisms. In very short our five guidelines spells:

  1. Establish that the sequences come from the intended gene or marker
    Can be done using a multiple alignment of the sequences and verifying that they all feature some suitable, conserved sub-region (the 5.8S gene in the ITS case)
  2. Establish that all sequences are given in the correct (5’ to 3’) orientation
    Examine the alignment for any sequences that do not align at all to the others; re-orient these; re-run the alignment step; and examine them again
  3. Establish that there are no (at least bad cases of) chimeras in the dataset
    Run the sequences through BLAST in one of the large sequence databases, e.g. at NCBI (or in the ITS case, use the UNITE database), to verify that the best match comprises more or less the full length of the query sequences
  4. Establish that there are no other major technical errors in the sequences
    Examine the BLAST results carefully, particularly the graphical overview and the pairwise alignment, for anomalies (there are some nice figures in the paper on how it should and should not look like)
  5. Establish that any taxonomic annotations given to the sequences make sense
    Examine the BLAST hit list to see that the species names produced make sense

A much more thorough description of these guidelines can be found in the paper itself, which is available under open access from MycoKeys. There’s simply no reason not to go there and at least take a look at it. Happy quality control!

Reference
Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson K-H, Larsson E, Kõljalg U: Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys. Issue 4 (2012), 37–63. doi: 10.3897/mycokeys.4.3606 [Paper link]

ISME14 begins today

I am on my way to Copenhagen for the ISME14 conference that begins today. I’m myself quite excited about this event, and will present three posters (two as first author), and give a short talk on antibiotic resistance gene identification and metagenomics. My talk will be in the Bioinformatics in Microbial Ecology session on Thursday afternoon (at 13.30).

If you’d like to talk about Metaxa and Megraft, I will present an SSU-oriented poster in the Monday afternoon poster section (board number 267A). My antibiotic resistance gene poster will be presented on Thursday afternoon (board number 002A), and I really encourage everyone interested in metagenomics (especially metagenomic assembly) to come talk to me then! Finally, I am also partially responsible for a poster on periphyton metagenomics with Martin Eriksson as its main author. This poster is also presented on Monday, in the Microbial Dispersion and Biogeography session (board number 021A).

I hope to be able to make another post later tonight on what are the “essential” sessions for me on this conference. Hope to see you there soon!

New paper accepted: Megraft

Yesterday, our paper on Megraft – a software tool to graft ribosomal small subunit (16S/18S) fragments onto full-length SSU sequences – became available as an accepted online early article in Research in Microbiology. Megraft is built upon the notion that when examining the depth of a community sequencing effort, researchers often use rarefaction analysis of the ribosomal small subunit (SSU/16S/18S) gene in a metagenome. However, the SSU sequences in metagenomic libraries generally are present as fragmentary, non-overlapping entries, which poses a great problem for this analysis. Megraft aims to remedy this problem by grafting the input SSU fragments from the metagenome (obtained by e.g. Metaxa) onto full-length SSU sequences. The software also uses a variability model which accounts for observed and unobserved variability. This way, Megraft enables accurate assessment of species richness and sequencing depth in metagenomic datasets.

The algorithm, efficiency and accuracy of Megraft is thoroughly described in the paper. It should be noted that this is not a panacea for species richness estimates in metagenomics, but it is a huge step forward over existing approaches. Megraft shares some similarities with EMIRGE (Miller et al., 2011), which is a software package for reconstruction of full-length ribosomal genes from paired-end Illumina sequences. Megraft, however, is set apart in that it has a strong focus on rarefaction, and functions also when the number of sequences is small, which is often the case in 454 and Sanger-based metagenomics studies. Thus, EMIRGE and Megraft seek to solve a roughly similar problem, but for different sequencing technologies and sequencing scales.

Megraft is available for download here, and the paper can be read here.

  1. Bengtsson, J., Hartmann, M., Unterseher, M., Vaishampayan, P., Abarenkov, K., Durso, L., Bik, E.M., Garey, J.R., Eriksson, K.M., Nilsson R.H. (2012). Megraft: A software package to graft
  2. Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W., & Banfield, J. F. (2011). EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biology, 12(5), R44. doi:10.1186/gb-2011-12-5-r44

Presentation at SocBiN 2012

For those of you who like to listen to (or look at) me, I will be giving a presentation at this year’s SocBiN conference in Stockholm. My presentation has the long and quite informative title: Comprehensive Analysis of Antibiotic Resistance Genes in River Sediment, Well Water and Soil Microbial Communities Using Metagenomic DNA Sequencing. The talk is scheduled in the Using Next generation sequence data session, right after Jeroen Raes and Christopher Quince… It’s a short talk, so I will probably need to keep it simple, but it will be the first time I present results generated in relation with my present position, which I personally feel is very nice. We’re moving forward!