Tag: Environment

Talk on the EDAR2015 conference

I will be giving a talk at the Third International symposium on the environmental dimension of antibiotic resistance (EDAR2015) next month (five weeks from now. The talk is entitled “Turn up the signal – wipe out the noise: Gaining insights into antibiotic resistance of bacterial communities using metagenomic data“, and will deal with handling of metagenomic data in antibiotic resistance gene research. The talk will highlight the some particular pitfalls related to interpretation of data, and exemplify how flawed analysis practices can result in misleading conclusions regarding antibiotic resistance risks. I will particularly address how taxonomic composition influences the frequencies of resistance genes, the importance of knowledge of the functions of the genes in the databases used, and how normalization strategies influence the results. Furthermore, we will show how the context of resistance genes can allow inference of their potential to spread to human pathogens from environmental or commensal bacteria. All these aspects will be exemplified by data from our studies of environments subjected to pharmaceutical pollution in India, the effect of travel on the human resistome, and modern municipal wastewater treatment processes.

The talk will take place on Monday, May 18, 2015 at 13:20. The full scientific program for the conference can be found here. Registration for the conference is still possible, although not for the early-bird price. I look forward to see a lot of the people who will attend the conference, and hopefully also you!

Indian lake picked up by Indian media

It is nice to see that Indian media has picked up the story about antibiotic resistance genes in the heavily polluted Kazipally lake. In this case, it is the Deccan Chronicle who have been reporting on our findings and briefly interviewed Prof. Joakim Larsson about the study. The issue of pharmaceutical pollution of the environment in drug-producing countries is still rather under-reported and public perception of the problem might be rather low. Therefore, it makes me happy to see an Indian newspaper reporting on the issue. The scientific publication referred to can be found here.

Published paper: Aquatic effect-based monitoring tools

A couple of days ago a paper was published in Environmental Sciences Europe summarizing the EU report on effect-based tools for use in toxicology in the aquatic environment I have been involved in (1). This report was officially published last spring (2), and can be found here, with the annex available on the European Commission document website. My contribution to the paper was, as with the report, in the genomics and metagenomics section. The paper briefly presents modern bioassays, biomarkers and ecological methods that can be used for aquatic monitoring of the environment.

References:

  1. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Dulio V, Broeg K, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, O’Toole S, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Hollert H, Di Paolo C, Brack W. Kammann U, Kase R: The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe, 27, 7 (2015). doi: 10.1186/s12302-015-0039-4 [Paper link]
  2. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Broeg K, Kammann U, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kase R, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Dulio V, Hollert H, Di Paolo C, Brack W (2014). Technical Report on Aquatic Effect-Based Monitoring Tools. European Commission. Technical Report 2014-077, Office for Official Publications of European Communities, ISBN: 978-92-79-35787-9. doi:10.2779/7260

A novel antibiotic? Pretty cool, but…

In a recent paper in Nature, a completely new antibiotic – teixobactin – is described (1). The really cool thing about this antibiotic is that it was discovered in a screen of uncultured bacteria, grown using new technology that enable controlled growth of single colonies in situ. I really like this idea, and I think the prospect of a novel antibiotic using a previously unexploited mechanism is super-promising, particularly in the light of alarming resistance development in clinically important pathogens (2,3). What really annoys me about the paper is the claim (already in the abstract) that since “we did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin (…) the properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.” To me, this sounds pretty much like a bogus statement; in essence telling me that we apparently have not learned anything from the 70 years of antibiotics usage and resistance development. After working with antibiotic resistance a couple of years, particularly from the environmental perspective, I have a very disturbing feeling that there is already resistance mechanisms against teixobactin waiting out in the wild (4,5). Pretending that lack of mutation-associated resistance development means that there could not be resistance development did not help vancomycin (6,7), and we now see VRE (Vancomycin Resistant Enterococcus) showing up as a major problem in clinics. The “avoid development of resistance” claim is downright irresponsible, and the cynic in me cannot help to think that NovoBiotic Pharmaceuticals (the affiliation of almost half of the authors) has a monetary finger in this jar. In the end, time will tell how “resistance-resilient” teixobactin is and how well we can handle the gift of a novel antibiotic.

  1. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K: A new antibiotic kills pathogens without detectable resistance. Nature (2015). doi:10.1038/nature14098
  2. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, 57: 704–710 (2013).
  3. French GL: The continuing crisis in antibiotic resistance. Int J Antimicrob Agents, 36 Suppl 3:S3–7 (2010).
  4. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5: 648 (2014).
  5. Larsson DGJ: Antibiotics in the environment. Ups J Med Sci, 119: 108–112 (2014).
  6. Wright GD: Mechanisms of resistance to antibiotics. Curr Opin Chem Biol, 7:563–569 (2003).
  7. Werner G, Strommenger B, Witte W: Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol, 3: 547–562 (2008).

Polluted lake paper in final form

Our paper describing the bacterial community of a polluted lake in India has now been typeset and appears in its final form in Frontiers in Microbiology. If I may say so, I think that the paper turned out to be very goodlooking and it is indeed nice to finally see it in print. The paper describes an unprecedented diversity and abundance of antibiotic resistance genes and genes enabling transfer of DNA between bacteria. We also describe a range of potential novel plasmids from the lake. Finally, the paper briefly describes a new approach to targeted assembly of metagenomic data — TriMetAss — which can be downloaded here.

Reference:
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648

Published paper: Antibiotic resistance genes in a polluted lake

The first work in which I have employed metagenomics to investigate antibiotic resistance has been accepted in Frontiers in Microbiology, and is (at the time of writing) available as a provisional PDF. In the paper (1), which is co-authored by Fredrik Boulund, Jerker Fick, Erik Kristiansson and Joakim Larsson, we have used shotgun metagenomic sequencing of an Indian lake polluted by dumping of waste from pharmaceutical production. We used this data to describe the diversity of antibiotic resistance genes and the genetic context of those, to try to predict their genetic transferability. We found resistance genes against essentially every major class of antibiotics, as well as large abundances of genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant in the polluted lake than in a Swedish lake included for comparison, where only eight resistance genes were found. The abundances of resistance genes have previously only been matched by river sediment subject to pollution from pharmaceutical production (2). In addition, we describe twenty-six known and twenty-one putative novel plasmids from the Indian lake metagenome, indicating that there is a large potential for horizontal gene transfer through conjugation. Based on the wide range and high abundance of known resistance factors detected, we believe that it is plausible that novel resistance genes are also present in the lake. We conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. This work further highlights previous findings that pharmaceutical production settings could provide sufficient selection pressure from antibiotics (3) to drive the development of multi-resistant bacteria (4,5), resistance which may ultimately end up in pathogenic species (6,7). The paper can be read in its entirety here.

References:

  1. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, Volume 5, Issue 648 (2014). doi: 10.3389/fmicb.2014.00648
  2. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ: Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, Volume 6, e17038 (2011). doi:10.1371/journal.pone.0017038.
  3. Larsson DGJ, de Pedro C, Paxeus N: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater, Volume 148, 751–755 (2007). doi:10.1016/j.jhazmat.2007.07.008
  4. Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ERB, Larsson DGJ, Shouche YS: A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria. PLoS ONE, Volume 8, e77310 (2013). doi:10.1371/journal.pone.0077310
  5. Johnning A, Moore ERB, Svensson-Stadler L, Shouche YS, Larsson DGJ, Kristiansson E: Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl Environ Microbiol, Volume 79, 7256–7263 (2013). doi:10.1128/AEM.02141-13
  6. Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR., et al.: Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect, Volume 121, 878–885 (2013). doi:10.1289/ehp.1206446
  7. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, Volume 57, 704–710 (2013). doi:10.1093/cid/cit355

Published paper: Detoxification genes in marine bacteria

I just got word from BMC Genomics that my most recent paper has just been published (in provisional form; we still have not seen the edited proofs). In this paper (1), which I have co-authored with Anders Blomberg, Magnus Alm Rosenblad and Mikael Molin, we utilize metagenomic data from the GOS-expedition (2) together with fully sequenced bacterial genomes to show that:

  1. Detoxification genes in general are underrepresented in marine planktonic bacteria
  2. Surprisingly, the detoxification that show a differential distribution are more abundant in open ocean water than closer to the coast
  3. Peroxidases and peroxiredoxins seem to be the main line of defense against oxidative stress for bacteria in the marine milieu, rather than e.g. catalases
  4. The abundance of detoxification genes does not seem to increase with estimated pollution.

From this we conclude that other selective pressures than pollution likely play the largest role in shaping marine planktonic bacterial communities, such as for example nutrient limitations. This suggests substantial streamlining of gene copy number and genome sizes, in line with observations made in previous studies (3). Along the same lines, our findings indicate that the majority of marine bacteria would have a low capacity to adapt to increased pollution, which is relevant as large amounts of human pollutants and waste end up in the oceans every year. The study exemplifies the use of metagenomics data in ecotoxicology, and how we can examine anthropogenic consequences on life in the sea using approaches derived from genomics. You can read the paper in its entirety here.

References:

  1. Bengtsson-Palme J, Alm Rosenblad M, Molin M, Blomberg A: Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics. Volume 15, Issue 749 (2014). doi: 10.1186/1471-2164-15-749 [Paper link]

  2. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, Van Belle C, Chandonia J-M, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, et al: The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biology. 5:e16 (2007).
  3. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson KY, Williamson SJ, Tovchigrechko A, Allen AE, Zeigler LA, Sutton G, Eisenstadt E, Rogers Y-H, Friedman R, Frazier M, Venter JC: Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature. 468:60–66 (2010).

EU report on effect-based tools for ecotoxicology

Because of my previous involvement in a Swedish report on toxicological monitoring using (meta)-genomics tools [1], I also became in a related EU report on effect-based tools for use in toxicology in the aquatic environment. This report has recently been officially published [2], and can be found here, with the annex available on the European Commission document website. My contribution to this report has been in the genomics and metagenomics section (Chapter 7: OMICS techniques), in which I wrote the metagenomics part and contributed to the rest. I personally think this is a quite forward-thinking report, which is nice for a large institution such as the EU.

  1. Länsstyrelsen i Västra Götalands län. (2012). Swedish monitoring of hazardous substances in the aquatic environment (No. 2012:23). (A.-S. Wernersson, Ed.) Current vs required monitoring and potential developments (pp. 1–291). Länsstyrelsen i Västra Götalands län, vattenvårdsenheten.
  2. Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Broeg K, Kammann U, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kase R, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Dulio V, Hollert H, Di Paolo C, Brack W (2014). Technical Report on Aquatic Effect-Based Monitoring Tools. European Commission. Technical Report 2014-077, Office for Official Publications of European Communities, ISBN: 978-92-79-35787-9. doi:10.2779/7260

Swedish monitoring of hazardous substances

I was recently involved as an adviser in a report by the County Administrative Board in Västra Götaland (Länsstyrelsen) which has now been published [1]. [UPDATE: The PDF link at Länsstyrelsen’s page does not seem to work, but leads to another report in Swedish. I have reported this error to the web admin, we’ll see what happens. Once again, the PDF seems to work.] The report aims to identify gaps in the current monitoring system of hazardous substances in the Swedish environment. The report deals with effect based monitoring tools and their usefulness for predicting and/or observing effects of hazardous substances in the environment. The overall conclusion of the report is that there are several gaps in both knowledge and techniques, and a need for developing new resources. However, Sweden still has a good potential to adapt the monitoring system to fill the needs. I have been involved in one of the last chapters, describing the use of metagenomics if study ecosystem function (chapter 30.3). For people with an interest in environmental monitoring, the report is an interesting read in its entirety. For those more interested in applications for metagenomics I recommend turning to page 285 and continue to the end of the report (it’s only five pages on metagenomics, so you’ll manage).

  1. Länsstyrelsen i Västra Götalands län. (2012). Swedish monitoring of hazardous substances in the aquatic environment (No. 2012:23). (A.-S. Wernersson, Ed.) Current vs required monitoring and potential developments (pp. 1–291). Länsstyrelsen i Västra Götalands län, vattenvårdsenheten.

Blurring the line between cause and effect

Finally I have gotten around to finish my reply to Amy Pruden, who gave me some highly relevant and well-balanced critique of my previous post on antibiotic resistance genes as pollutants, back in early March. Too much came in between, but now I am more or less content with my answer.

First of all I would like to thank Amy for her response to my post on antibiotic resistance genes as pollutants. Her reply is very well thought-through, and her criticism of some of my claims is highly appropriate. For example, I have to agree on that the extracellular DNA pool is vastly uncharacterized, and that my statement on this likely not being a source of resistance transmission is a bit of a stretch. The role of “free-floating” DNA in gene transfer must be further elucidated, and currently we do not really know whether it is important or not; and if so, to what extent it contributes.

However, I still maintain my view that there are problems with considering resistance genes pollutants, mainly because the blurs the line between cause and effect. If we for example consider photosynthetic microbial communities exposed to the photosynthesis inhibitor Irgarol, the communities develop (or acquires) tolerance towards the compound over time (Blanck et al 2009). The tolerance mechanism has been attributed to changes in the psbA gene sequence (Eriksson et al. 2009). If we address this issue from a “resistance-genes-as-pollutants” perspective, would these tolerance-conveying psbA genes be considered pollutants? It would make sense to do so as they are unwanted in weed control circumstances; much like antibiotic resistance genes are unwanted in clinical contexts. It could be argued here that in these microbes such tolerance-associated psbA genes do not cause any harm. But consider for a moment that they did not occur microbes, but in weeds, would they then be considered pollutants? In weeds they would certainly cause (at least economic) harm. Furthermore, say that the tolerance-conveying psbA genes have the ability to spread (which is possible at least in marine settings assisted by phages (Lindell et al 2005)), would that make these tolerance genes pollutants? It is quite of a stretch but as plants can take up genetic material from bacteria (c.f. Clough & Bent 1998, although this is not my area of expertise), there could be a spreading potential to weeds of these tolerance-conveying psbA genes.

What I am trying to say is that if we start viewing antibiotic resistance genes as pollutants per se, instead of looking at the chemicals (likely) causing resistance development, we start blurring the line between cause and effect. Resistance genes in the environment provide resilience to communities (at least to some species – the issue of ecosystem function responses to toxicants is a highly interesting area one as well). However, in this case the resilience itself is the problem, because we think it can spread into human and animal pathogens. But from my point of view, the causes are still use, overuse, misuse and inappropriate release of antibiotics. Therefore, I maintain that we should be careful with pointing out resistance genes by themselves as pollutants – if we do not have very good reasons to do so.

Nevertheless, that does not mean that I think Pruden, and many other prominent authors, are wrong when they refer to resistance genes as pollutants. All I want to point out is that the statement in itself is a bit dangerous, as it might draw attention towards mitigating the effect of pollution, instead of mitigating the source of pollution itself. The persistence of resistance genes in bacterial genomes is alarming (Andersson & Hughes 2011), as it means that removal of selection pressures may have less effect on resistance gene abundance than anticipated. However, the only way I see out of this darkening scenario is to:

  1. Minimize the selection pressure for resistance genes in the clinical setting
  2. Immediately reduce environmental release of antibiotics, both from manufacturing and use. This primarily has to be done using better treatment technologies
  3. Find the routes that enable environmental bacteria to disseminate resistance genes to clinically relevant species and strains – and close them
  4. Develop antibiotics exploiting new mechanisms to eliminate bacteria

Lastly, I would like to thank Amy for taking my critique seriously – I think we agree on a lot more than we differ on, and I look forward to have this discussion in person at some point. I think we both agree that regardless of our standpoint, the terminology used in this context deserves to be discussed. Nevertheless, the terminology is quite unimportant compared to the values that are at stake – our fundamental ability to treat diseases and perform modern health care.

References

  1. Andersson, D.I. & Hughes, D., 2011. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiology Reviews, 35(5), pp.901–911.
  2. Blanck, H., Eriksson, K. M., Grönvall, F., Dahl, B., Guijarro, K. M., Birgersson, G., & Kylin, H. (2009). A retrospective analysis of contamination and periphyton PICT patterns for the antifoulant irgarol 1051, around a small marina on the Swedish west coast. Marine pollution bulletin, 58(2), 230–237. doi:10.1016/j.marpolbul.2008.09.021
  3. Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant journal : for cell and molecular biology, 16(6), 735–743.
  4. Eriksson, K. M., Clarke, A. K., Franzen, L.-G., Kuylenstierna, M., Martinez, K., & Blanck, H. (2009). Community-level analysis of psbA gene sequences and irgarol tolerance in marine periphyton. Applied and Environmental Microbiology, 75(4), 897–906. doi:10.1128/AEM.01830-08
  5. Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M., & Chisholm, S. W. (2005). Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 438(7064), 86–89. doi:10.1038/nature04111