Published paper: CAFE
We start the new year with a bang, or at least a new paper published. Bioinformatics put our paper (1) describing the software package CAFE online today (although it was accepted late last year). The CAFE package is a combination of Perl and R tools that can analyze data from paired transposon mutant sequencing experiments (2-4), generate fitness coefficients for each gene and condition, and perform appropriate statistical testing on these fitness coefficients. The paper is short, but shows that CAFE performs as good as the best competing tools (5-7) while being superior at controlling for false positives (you’ll have to dig into the supplement to find the data for that though).
Importantly, this is a collaborative effort by basically the entire research group from last spring: me, Haveela, Emil, Anna and our visiting student Adriana. A big thanks to all of you for working on this short but important paper! You can read the full paper here.
References
- Abramova A, Osińska A, Kunche H, Burman E, Bengtsson-Palme J (2021) CAFE: A software suite for analysis of paired-sample transposon insertion sequencing data. Bioinformatics, advance article doi: 10.1093/bioinformatics/btaa1086
- Chao,M.C. et al. (2016) The design and analysis of transposon insertion sequencing experiments. Nature reviews Microbiology, 14, 119–128.
- van Opijnen,T. and Camilli,A. (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nature reviews Microbiology, 11, 435–442.
- Goodman,A.L. et al. (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nature Protocols, 6, 1969–1980.
- McCoy,K.M. et al. (2017) MAGenTA: a Galaxy implemented tool for complete Tn- Seq analysis and data visualization. Bioinformatics, 33, 2781– 2783.
- Zhao,L. et al. (2017) TnseqDiff: identification of conditionally essential genes in transposon sequencing studies. BMC Bioinformatics, 18.
- Zomer,A. et al. (2012) ESSENTIALS: Software for Rapid Analysis of High Throughput Transposon Insertion Sequencing Data. PLoS ONE, 7, e43012.
December 2020 Pod: Christmas theme
In the sixth episode of the Microbiology Lab Pod, recorded on December 17, the crew (Johan Bengtsson-Palme, Emil Burman, Haveela Kunche, Anna Abramova, Marcus Wenne, Sebastian Wettersten and Mahbuba Lubna Akter) talks about Haveela’s master thesis, virtual conferences and bring three Christmas themed papers.
The specific papers discussed in the pod (with approximate timings) are as follows:
- 13:00 – Fulcher, M.R., Bolton, M.L., Millican, M.D., et al., 2020. Broadening Participation in Scientific Conferences during the Era of Social Distancing. Trends in Microbiology. https://doi.org/10.1016/j.tim.2020.08.004
- 25:15 – de Clercq, N.C., Frissen, M.N., Levin, E., et al., 2019. The effect of having Christmas dinner with in-laws on gut microbiota composition. Human Microbiome Journal 13, 100058. https://doi.org/10.1016/j.humic.2019.100058
- 44:00 – Garcia-Lemos, A.M., Gobbi, A., et al., 2020. Under the Christmas Tree: Belowground Bacterial Associations With Abies nordmanniana Across Production Systems and Plant Development. Frontiers in Microbiology 11. https://doi.org/10.3389/fmicb.2020.00198
- 56:15 – Halverson, L.J., Clayton, M.K., Handelsman, J., 1993. Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biology and Biochemistry 25, 485–493. https://doi.org/10.1016/0038-0717(93)90074-L
- 65:00 – Glendinning, L., Genç, B., Wallace, R.J., Watson, M., 2020. Metagenomic analysis of the cow, sheep, reindeer and red deer rumen. bioRxiv. https://doi.org/10.1101/2020.02.12.945139
The podcast was recorded on December 17, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.
Podcast: Play in new window | Download
Subscribe: RSS
August 2020 Pod: From the deep sea to the lost sense of smell
The fall semester has begun, and with that we have started a new round of recordings of the Microbiology Lab Pod. Our fourth episode was recorded on August 20, and the now-familiar crew (Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova) has been augmented with two new master students in the lab: Sebastian Wettersten and Mahbuba Lubna Akter. This time, we discuss microbial communities of dead and alive deep-sea hydrothermal vents, look at a model system for pathogenic biofilm formation in the lungs, and check in on why patients with covid-19 commonly lose their sense of smell.
The specific papers discussed in the pod (with approximate timings) are as follows:
- 11:30 – Hou, J., Sievert, S.M., Wang, Y. et al., 2020. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome 8, 102. https://doi.org/10.1186/s40168-020-00851-8
- 28:45 – Harrington, N.E., Sweeney, E., Harrison, F., 2020. Building a better biofilm – Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm 2, 100024. https://doi.org/10.1016/j.bioflm.2020.100024
- 52:30 – Brann, D.H., Tsukahara, T., Weinreb, C., et al., 2020. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science Advances 6, eabc5801. https://doi.org/10.1126/sciadv.abc5801
- 71:45 – Chen, M., Shen, W., Rowan, N.R., et al., 2020. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. European Respiratory Journal 2001948. https://doi.org/10.1183/13993003.01948-2020
- 77:15 – Zhang, X., Wang, J., 2020. Deducing the Dose-response Relation for Coronaviruses from COVID-19, SARS and MERS Meta-analysis Results. medRxiv. https://doi.org/10.1101/2020.06.26.20140624
- 78:30 – Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., et al., 2020. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. https://doi.org/10.1016/j.cell.2020.08.017
- 79:45 – Mateus, J., Grifoni, A., Tarke, A., et al., 2020. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science eabd3871. https://doi.org/10.1126/science.abd3871
- 80:30 – Lv, H., Wu, N.C., Tsang, O.T.-Y., et al., 2020. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Reports 31, 107725. https://doi.org/10.1016/j.celrep.2020.107725
The podcast was recorded on August 20, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.
Podcast: Play in new window | Download
Subscribe: RSS
June 2020 Pod: Coronavirus galore!
In the third episode of Microbiology Lab Pod, recorded in June, a crew consisting of Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova goes into depth with what we knew about the novel coronavirus at the time. We also talk about Emil‘s master thesis, potential alternative antibiotic treatment regimes and the lung microbiome in cystic fibrosis.
Unfortunately, the sound quality of this episode is quite bad at times. We have tried to rescue the audio as best as we can, but it is still a bit annoying. We promise to do better next time!
The specific papers discussed in the pod (with approximate timings) are as follows:
- 18:15 – Lozano, G.L., Bravo, J.I., Garavito Diago, M.F., Park, H.B., Hurley, A., Peterson, S.B., Stabb, E.V., Crawford, J.M., Broderick, N.A., Handelsman, J., 2019. Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBio 10. https://doi.org/10.1128/mBio.02846-18
- 25:15 – Ghazizadeh, Z. et al. 2020 Androgen Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. bioArxiv, https://doi.org/10.1101/2020.05.12.091082
- 34:45 – St. John, A.L., Rathore, A.P.S 2020. Early Insights into Immune Responses during COVID-19. The Journal of Immunology 205, 555-564. https://doi.org/10.4049/jimmunol.2000526
- 49:30 – Worobey, M., Pekar, J., Larsen, B.B., Nelson, M.I., Hill, V., Joy, J.B., Rambaut, A., Suchard, M.A., Wertheim, J.O., Lemey, P., 2020. The emergence of SARS-CoV-2 in Europe and the US. bioRxiv. https://doi.org/10.1101/2020.05.21.109322
- 52:00 – La Rosa, G., Mancini, P., Bonanno Ferraro, G., Veneri, C., Iaconelli, M., Bonadonna, L., Lucentini, L., Suffredini, E., 2020. SARS-CoV-2 has been circulating in northern Italy since December 2019: evidence from environmental monitoring. medRxiv. https://doi.org/10.1101/2020.06.25.20140061
- 52:30 – https://lakartidningen.se/aktuellt/nyheter/2020/06/viruset-kan-ha-funnits-i-dalarna-redan-i-december/
- 53:15 – Deslandes, A., Berti, V., Tandjaoui-Lambotte, Y., Alloui, C., Carbonnelle, E., Zahar, J.R., Brichler, S., Cohen, Y., 2020. SARS-CoV-2 was already spreading in France in late December 2019. International Journal of Antimicrobial Agents 55, 106006. https://doi.org/10.1016/j.ijantimicag.2020.106006
- 54:45 – Li, X., Giorgi, E.E., Marichannegowda, M.H., Foley, B., Xiao, C., Kong, X.-P., Chen, Y., Gnanakaran, S., Korber, B., Gao, F., 2020. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Science Advances eabb9153. https://doi.org/10.1126/sciadv.abb9153
- 56:00 – Lehmann, D., Halbwax, M.L., Makaga, L., Whytock, R., Ndindiwe Malata, L., Bombenda Mouele, W., Momboua, B.R., Koumba Pambo, A.F., White, L.J.T., 2020. Pangolins and bats living together in underground burrows in Lopé National Park, Gabon. African Journal of Ecology 58, 540–542. https://doi.org/10.1111/aje.12759
- 61:15 – Cuthbertson, L., Walker, A.W., Oliver, A.E., Rogers, G.B., Rivett, D.W., Hampton, T.H., Ashare, A., Elborn, J.S., De Soyza, A., Carroll, M.P., Hoffman, L.R., Lanyon, C., Moskowitz, S.M., O’Toole, G.A., Parkhill, J., Planet, P.J., Teneback, C.C., Tunney, M.M., Zuckerman, J.B., Bruce, K.D., van der Gast, C.J., 2020. Lung function and microbiota diversity in cystic fibrosis. Microbiome 8. https://doi.org/10.1186/s40168-020-00810-3
- 70:15 – Hansen, E., Karslake, J., Woods, R.J., Read, A.F., Wood, K.B., 2020. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLOS Biology 18, e3000713. https://doi.org/10.1371/journal.pbio.3000713
The podcast was recorded on June 23, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.
Podcast: Play in new window | Download
Subscribe: RSS
May 2020 Pod: Discovering novel resistance genes and how bacteria become virulent
In the second episode of Microbiology Lab Pod, a crew consisting of Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova discusses how to identify novel resistance genes with our special guest Marlies Böhm. We also talk about bacterial virulence: how do bacteria become virulent, how do virulence relate to competition, how do bacteria evade the immune system and can we attenuate virulence using fatty acids?
The specific papers discussed in the pod (with approximate timings) are as follows:
- 7:15 – Böhm, M.-E., Razavi, M., Flach, C.-F., Larsson, D.G.J., 2020a. A Novel, Integron-Regulated, Class C β-Lactamase. Antibiotics 9, 123. https://doi.org/10.3390/antibiotics9030123
- 7:15 – Böhm, M.-E., Razavi, M., Marathe, N.P., Flach, C.-F., Larsson, D.G.J., 2020b. Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. Microbiome 8. https://doi.org/10.1186/s40168-020-00814-z
- 9:15 – Makowska, N., et al., 2020. Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. Science of The Total Environment 716, 137022. https://doi.org/10.1016/j.scitotenv.2020.137022
- 20:45 – Marathe, N.P., et al., 2019. Scandinavium goeteborgense gen. nov., sp. nov., a New Member of the Family Enterobacteriaceae Isolated From a Wound Infection, Carries a Novel Quinolone Resistance Gene Variant. Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.02511
- 33:45 – Kaito, C., Yoshikai, H., Wakamatsu, A., Miyashita, A., Matsumoto, Y., Fujiyuki, T., Kato, M., Ogura, Y., Hayashi, T., Isogai, T., Sekimizu, K., 2020. Non-pathogenic Escherichia coli acquires virulence by mutating a growth-essential LPS transporter. PLOS Pathogens 16, e1008469. https://doi.org/10.1371/journal.ppat.1008469
- 43:45 – Lories, B., Roberfroid, S., Dieltjens, L., De Coster, D., Foster, K.R., Steenackers, H.P., 2020. Biofilm Bacteria Use Stress Responses to Detect and Respond to Competitors. Current Biology 30, 1231-1244.e4. https://doi.org/10.1016/j.cub.2020.01.065
- 45:45 – Lozano, G.L., Bravo, J.I., Garavito Diago, M.F., Park, H.B., Hurley, A., Peterson, S.B., Stabb, E.V., Crawford, J.M., Broderick, N.A., Handelsman, J., 2019. Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBio 10. https://doi.org/10.1128/mBio.02846-18
- 55:45 – Kumar, P., Lee, J.-H., Beyenal, H., Lee, J., 2020. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology. https://doi.org/10.1016/j.tim.2020.03.014
- 60:15 – Gullberg, E., Cao, S., Berg, O.G., Ilbäck, C., Sandegren, L., Hughes, D., Andersson, D.I., 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 7, e1002158. https://doi.org/10.1371/journal.ppat.1002158
- 61:15 – Larsson, D.G.J., 2018. Risks of using the natural defence of commensal bacteria as antibiotics call for research and regulation. International Journal of Antimicrobial Agents 51, 277–278. https://doi.org/10.1016/j.ijantimicag.2017.12.018
- 65:15 – Lone, A.G., Bankhead, T., 2020. The Borrelia burgdorferi VlsE Lipoprotein Prevents Antibody Binding to an Arthritis-Related Surface Antigen. Cell Reports 30, 3663-3670.e5. https://doi.org/10.1016/j.celrep.2020.02.081
The podcast was recorded on May 7, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.
Podcast: Play in new window | Download
Subscribe: RSS
April 2020 Pod: The origin of the coronavirus, and more
In the very first episode of the Bengtsson-Palme lab podcast, a crew consisting of Johan Bengtsson-Palme, Emil Burman, Haveela Kunche and Anna Abramova discusses the origin of the novel coronavirus, interactions between influenza and the respiratory tract microbiome, resistant bacteria in glaciers, pathway analysis methods, a new genus of bacteria discovered in Gothenburg, as well as life in research during a global pandemic.
The specific papers discussed in the pod (with approximate timings) are as follows:
- 10:15 – Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., Garry, R.F., 2020. The proximal origin of SARS-CoV-2. Nature Medicine 26, 450–452. https://doi.org/10.1038/s41591-020-0820-9
- 17:30 – Zhou, P., et al., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. https://doi.org/10.1038/s41586-020-2012-7
- 19:30 – https://www.fli.de/en/press/press-releases/press-singleview/novel-coronavirus-sars-cov-2-fruit-bats-and-ferrets-are-susceptible-pigs-and-chickens-are-not/
- 20:45 – Kadioglu, O., Saeed, M., Greten, H.J., Efferth, T, 2020. Identification of novel compound against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Bulletin of the World Health Organization. https://doi.org/10.2471/BLT.20.255943
- 21:45 – Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., Yuen, K.Y., 2007. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection. Clinical Microbiology Reviews 20, 660–694. https://doi.org/10.1128/CMR.00023-07
- 22:15 – Fan, Y., Zhao, K., Shi, Z.-L., Zhou, P., 2019. Bat Coronaviruses in China. Viruses 11, 210. https://doi.org/10.3390/v11030210
- 29:15 – Zhang, L., et al., 2020. Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. Microbiome 8. https://doi.org/10.1186/s40168-020-00803-2
- 39:15 – Makowska, N., et al., 2020. Occurrence of integrons and antibiotic resistance genes in cryoconite and ice of Svalbard, Greenland, and the Caucasus glaciers. Science of The Total Environment 716, 137022. https://doi.org/10.1016/j.scitotenv.2020.137022
- 49:45 – Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., Larsson, D.G.J., 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in microbiology 5, 648. https://doi.org/10.3389/fmicb.2014.00648
- 58:45 – Gillings, M.R., 2014. Integrons: past, present, and future. Microbiology and molecular biology reviews : MMBR 78, 257–277. https://doi.org/10.1128/MMBR.00056-13
- 60:45 – Moradi, E., Marttinen, M., Häkkinen, T., Hiltunen, M., Nykter, M., 2019. Supervised pathway analysis of blood gene expression profiles in Alzheimer’s disease. Neurobiology of Aging 84, 98–108. https://doi.org/10.1016/j.neurobiolaging.2019.07.004
- 62:15 – Johnson, W.E., Li, C., Rabinovic, A., 2007. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127. https://doi.org/10.1093/biostatistics/kxj037
- 72:15 – Marathe, N.P., et al., 2019. Scandinavium goeteborgense gen. nov., sp. nov., a New Member of the Family Enterobacteriaceae Isolated From a Wound Infection, Carries a Novel Quinolone Resistance Gene Variant. Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.02511
- 76:00 – Boulund, F., et al., 2017. Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics 18, 438. https://doi.org/10.1186/s12864-017-4064-0
The podcast was recorded on April 9, 2020. If you want to reach out to us with comments, suggestions or other feedback, please send an e-mail to podcast at microbiology dot se or contact @bengtssonpalme via Twitter. The music that can be heard on the pod is composed by Johan Bengtsson-Palme and is taken from the album Cafe Phonocratique.
Podcast: Play in new window | Download
Subscribe: RSS