Tag: Interactions

Welcome back Agata

I am very happy to welcome Agata Marchi back to the group as a PhD student! Agata was a master student in the group last year, doing a thesis focused on implementing a bioinformatic approach to identify differences between the genomes of host-associated and non host-associated strains of Pseudomonas aeruginosa. While one of her first tasks will be to complete this work and prepare it for publication, her doctoral studies will primarily be on the interactions between bacteria and between bacteria and host in the human microbiome and how these relate to complex diseases. She will focus on developing and applying machine learning methods to better understand this interplay.

I am – as the rest of the group – very happy to welcome Agata back to the lab!

We’re hiring 2 PhD students and a postdoc

As I wrote a few days ago, I have now started my new position at Chalmers SysBio. This position is funded by the SciLifeLab and Wallenberg National Program for Data-Driven Life Science (DDLS), which also funds PhD and postdoc positions. We are now announcing two doctoral student projects and one postdoc project within the DDLS program in my lab.

Common to all projects is that they will the use of large-scale data-driven approaches (including machine learning and (meta)genomic sequence analysis), high-throughput molecular methods and established theories developed for macro-organism ecology to understand biological phenomena. We are for all three positions looking for people with a background in bioinformatics, computational biology or programming. In all three cases, there will be at least some degree of analysis and interpretation of large-scale data from ongoing and future experiments and studies performed by the group and our collaborators. The positions are all part of the SciLifeLab national research school on data-driven life science, which the students and postdoc will be expected to actively participate in.

The postdoc and one of the doctoral students are expected to be involved in a project aiming to uncover interactions between the bacteria in microbiomes that are important for community stability and resilience to being colonized by pathogens. This project also seeks to unearth which environmental and genetic factors that are important determinants of bacterial invasiveness and community stability. The project tasks may include things like predicting genes involved in pathogenicity and other interactions from sequencing data, and performing large-scale screening for such genes in microbiomes.

The second doctoral student is expected to work in a project dealing with understanding and limiting the spread of antibiotic resistance through the environment, identifying genes involved in antibiotic resistance, defining the conditions that select for antibiotic resistance in different settings, and developing approaches for monitoring for antibiotic resistance in the environment. Specifically, the tasks involved in this project may be things like identifying risk environments for AMR, define potential novel antibiotic resistance genes, and building a platform for AMR monitoring data.

For all these three positions, there is some room for adapting the specific tasks of the projects to the background and requests of the recruited persons!

We are very excited to see your applications and to jointly build the next generation of data driven life scientist! Read more about the positions here.

Portrait on my research

As part of a series highlighting the research at the Institute of Biomedicine, I was a few weeks a go interviewed about the research in the lab and my history. This interview has now been published on the department website, both in Swedish and English. I think it is a pretty nice read and a good introduction to our work and why we do what we do. Could make for a good weekend read!

Open PhD position

We are hiring a PhD student to work with interactions between the bacteria in human and environmental microbiomes that are important for community stability and resilience to being colonized by unwanted bacteria (including pathogens). The project seeks to unearth which environmental and genetic factors that are important determinants of bacterial invasiveness and community stability. You can read more at our Open Positions page.

We are looking for a candidate with experience with both bioinformatics and experimental microbiology. Previous experience with microbial communities is a plus, but not a must, as is work with human cell lines.

The project is fully funded by a grant from the Swedish Research Council and the position is planned for 4.5 years, with 4 years of research and course work and half a year of teaching.

If you feel that you are the right person for this position, you can apply hereWe look forward to your application! The deadline for applications is October 21.

Published paper: Temperature affects community interactions

I am very happy to announce that Emil Burman‘s (doctoral student in the lab) first first-author paper was published today in Frontiers in Microbiology. In this paper (1), we explored how temperature affected the interactions in the model microbial community THOR (2). Somewhat surprisingly, we found that even a small difference in temperature changed the community intrinsic properties (3) of this model community a lot. We furthermore find that changes in growth rates of the members of the community partially explains the changed interaction patterns, but only to some extent. Finally, we also found that biofilm production overall was much higher at lower temperatures (9-15°C) than at room temperature, and that at around 25°C and above the community formed virtually no biofilm.

The temperature range we tested is not unlikely to be encountered when incubating the community in a thermally unregulated environment. Thus, our results show that a high degree of temperature control is crucial between experiments, particularly when reproducing results across different laboratories, equipment, and personnel. This highlights the need for standards and transparency in research on microbial model communities (4).

Another important, related, aspect is that disruptive factors that discriminate against single members of the community are not unique to THOR. Instead, this is likely to be the case for other microbial model (as well as natural communities). Since only a few of these model communities have been elucidated for community behaviors outside of specific culturing conditions they were first contrived under, this may severely limit our view of interactions between microbes to specific laboratory settings. This casts some doubt on the validity of extrapolation from results obtained from microbial model communities. It seems to be important moving forward to establish that community-intrinsic behaviors in model communities are stable in the face of variable environmental conditions, such as temperature, pH, nutrient availability, and initial inoculum size.

A short backstory to this paper: this begun when Emil could not consistently replicate the results I had obtained during my postdoc (working on THOR) in Prof. Jo Handelsman’s lab at the University of Wisconsin-Madison. After a long time of troubleshooting, we realized that our lab did not hold a stable room temperature. We bought a cold incubator, and – boom – after that the expected community behavior came back. This made us realize the importance of temperature for the community-intrinsic properties of THOR, which then led to this more systematic investigation.

Great work Emil! It is nice to finally see this in its published form. Read the entire paper (open access) here!

References

  1. Burman E, Bengtsson-Palme J: Microbial community interactions are sensitive to small differences in temperature. Frontiers in Microbiology, 12, 672910 (2021). doi: 10.3389/fmicb.2021.672910
  2. Lozano GL, Bravo JI, Garavito Diago MF, Park HB, Hurley A, Peterson SB, Stabb EV, Crawford JM, Broderick NA, Handelsman J: Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. mBio, 10, 2, e02846-18 (2019). doi: 10.1128/mBio.02846-18
  3. Madsen JS, Sørensen SJ, Burmølle M: Bacterial social interactions and the emergence of community-intrinsic properties. Current Opinion in Microbiology 42, 104–109 (2018). doi: 10.1016/j.mib.2017.11.018
  4. Bengtsson-Palme J: Microbial model communities: To understand complexity, harness the power of simplicity. Computational and Structural Biotechnology Journal, 18, 3987-4001 (2020). doi: 10.1016/j.csbj.2020.11.043