Acknowledgements for the Metaxa2.1 update
I got a very nice little e-mail yesterday evening, which made me realize that when I posted the Metaxa 2.1 update, I forgot to thank and credit the wonderful Metaxa/Metaxa2 community who have contributed with input on which Metaxa2 features that they would like to see implemented. Particularly, I would like to thank Thomas Haverkamp who suggested the reference option, Åsa Sjöling who brainstormed what led to the metaxa2_uc tool with me, and everyone who have suggested various downstream analysis tricks that have got baked into the Metaxa2 Diversity Tools.
Within the Metaxa team I would like to specifically thank Kaisa Thorell (particularly for the --split_pairs
option) and Martin Hartmann (who said that the software should obviously be able to detect which BLAST version that was installed), who keep pushing for features and ideas to make the software better. Thanks a lot to all of you, and have a nice weekend!
Minor Metaxa2 bug fix
Today I have released Metaxa2 version 2.1.1, containing a fix to an embarrassing bug in the new metaxa2_uc program (part of the Metaxa2 Diversity Tools). A late change of the names of the different modes of that tool had not propagated to all parts of the code, and therefore only the “model” mode was functional in the previous version. No other changes to the Metaxa2 package has been made in this update, which can be downloaded here.
Metaxa2 2.1 released
I am very happy to announce that Metaxa2 version 2.1 has been released today. This new version brings a lot of important improvements to the Metaxa2 software (1), in particular by the introduction of the Metaxa2 Diversity Tools. This is the list of new features (further elaboration follows below):
- The Metaxa2 Diversity Tools:
- metaxa2_dc – a tool for collecting several .taxonomy.txt output files into one large abundance matrix, suitable for analysis in, e.g., R
- metaxa2_rf – generates rarefaction curves based on the .taxonomy.txt output
- metaxa2_si – species inference based on guessing species data from the other species present in the .taxonomy.txt output file
- metaxa2_uc – a tool for determining if the community composition of a sample is significantly different from others through resampling analysis
- Added a new detection mode for detection of multiple rRNA in the same sequence, e.g. a genome
- Added the
--reference
option to improve the use of Metaxa2 as a tool to sort out host rRNA sequences from a dataset - Added the
--split_pairs
option causing Metaxa2 to output paired-end sequences into two separate files, which is nice for further analysis of rRNA reads - The default setting for the
--align
option has been changed to ‘none
‘ - Automatic detection of which BLAST package that is installed
- Fixed a bug causing the last read of paired-end FASTA input to be ignored
- Fixed an occasionally occurring BLAST+ related warning message
- Fixed a bug that could cause the classifier to crash on highly divergent BLAST matches
The new version of Metaxa2 can be downloaded here, and for those interested I will spend the rest of this post outlining the new features.
Metaxa2 Diversity Tools
One often requested feature of Metaxa2 is the ability to further make simple analysis from the data after classification. The Metaxa2 Diversity Tools included in Metaxa2 2.1 is a seed for such an effort (although not close to a full-fledge community analysis package compared to QIIME (2) or Mothur (3)). The set currently consist of four tools
The Metaxa2 Data Collector (metaxa2_dc) is the simplest of them (but probably the most requested), designed to merge the output of several *.level_X.txt files from the Metaxa2 Taxonomic Traversal Tool into one large abundance matrix, suitable for further analysis in, for example, R. The Metaxa2 Species Inference tool (metaxa2_si) can be used to further infer taxon information on, for example, the species level at a lower reliability than what would be permitted by the Metaxa2 classifier, using a complementary algorithm. The idea is that is if only a single species is present in, e.g., a family and a read is assigned to this family, but not classified to the species level, that sequence will be inferred to the same species as the other reads, given that it has more than 97% sequence identity to its best reference match. This can be useful if the user really needs species or genus classifications but many organisms in the studied species group have similar rRNA sequences, making it hard for the Metaxa2 classifier to classify sequences to the species level.
The Metaxa2 Rarefaction analysis tool (metaxa2_rf) performs a rarefaction analysis based on the output from the Metaxa2 classifier, taking into account also the unclassified portion of rRNAs. The Metaxa2 Uniqueness of Community analyzer (metaxa2_uc), finally, allows analysis of whether the community composition of two or more samples or groups is significantly different. Using resampling of the community data, the null hypothesis that the taxonomic content of two communities is drawn from the same set of taxa (given certain abundances) is tested. All these tools are further described in the manual.
The genome mode
Metaxa2 has long been said not to be useful for predicting rRNA in longer sequences, such as full genomes or chromosomes, since it has traditionally only looked for a single rRNA hit. With Metaxa2 2.1, it is now possible to use Metaxa2 on longer sequences to detect multiple rRNA occurrences. To do this, you need to change the operating mode using the new --mode
option to either ‘auto
‘ or ‘genome
‘. The auto mode will treat sequences longer than 2500 bp as “genome” sequences and look for multiple matches in these.
The reference mode
Another feature request that has been addressed in the new Metaxa2 version is the ability to filter out certain sequences from the data set. For example, you may want to exclude all rRNA sequences that are derived from to host organism, but keep the analysis of all other rRNA reads. This is now possible by supplying a file of reference rRNA sequences to exclude in FASTA format to the --reference
option.
Experimental Usearch support
Finally, we have toyed around with support for Usearch (4) instead of BLAST (5) as the search algorithm for the classification step. However, this is far from fine-tuned and it is included as an experimental feature that you may use on your own risk! We recommend that you not use it for classification of data for publication yet. However, we are interested in how this works for you, so if you like you may test to run the Usearch algorithm in parallel with your BLAST-based analysis and compare the results and send me your input on how it works. You can read more about using Usearch at the end of the Metaxa2 manual.
References
- Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399 [Paper link]
- Caporaso JG, Kuczynski J, Stombaugh J et al.: QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336 (2010).
- Schloss PD, Westcott SL, Ryabin T et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541 (2009).
- Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461 (2010).
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–3402 (1997).
Talk at Swedish Bioinformatics Workshop
I have had the pleasure to be chosen as a speaker for next week’s (ten days from now) Swedish Bioinformatics Workshop. My talk is entitled “Turn up the signal – wipe out the noise: Gaining insights into bacterial community functions using metagenomic data“, and will largely deal with the same questions as my talk on EDAR3 in May this year. As then, the talk will highlight the some particular pitfalls related to interpretation of data, and exemplify how flawed analysis practices can result in misleading conclusions regarding community function, and use examples from our studies of environments subjected to pharmaceutical pollution in India, the effect of travel on the human resistome, and modern municipal wastewater treatment processes.
The talk will take place on Thursday, September 24, 2015 at 16:30. The full program for the conference can be found here. And also, if you want a sneak peak of the talk, you can drop by on Friday 13.00 at Chemistry and Molecular Biology, where I will give a seminar on the same topic in the Monthly Bioinformatic Practical Meetings series.
Vacation
This week is the first of my long summer break, and I will be on vacation until mid-August. This means that I will only read mail sporadically, if at all. For very urgent issues, please give me a call or send me an sms, and I will attend to your message as soon as possible (this of course only applies to those of you who have my number in the first place).
For support questions, there are a few options:
- For questions regarding Metaxa or Metaxa2, please add “METAXA” to the beginning of the subject line of the e-mail.
- For questions regarding ITSx, please add “ITSX” to the beginning of the subject line.
- For other support questions, please add “SUPPORT” to the beginning of the subject line.
This way I can easily assess which mails that are urgent to reply to. Don’t add “IMPORANT” or “URGENT” since that will just invoke the spam filter.
I wish you all a very very great summer!
Talk on the EDAR2015 conference
I will be giving a talk at the Third International symposium on the environmental dimension of antibiotic resistance (EDAR2015) next month (five weeks from now. The talk is entitled “Turn up the signal – wipe out the noise: Gaining insights into antibiotic resistance of bacterial communities using metagenomic data“, and will deal with handling of metagenomic data in antibiotic resistance gene research. The talk will highlight the some particular pitfalls related to interpretation of data, and exemplify how flawed analysis practices can result in misleading conclusions regarding antibiotic resistance risks. I will particularly address how taxonomic composition influences the frequencies of resistance genes, the importance of knowledge of the functions of the genes in the databases used, and how normalization strategies influence the results. Furthermore, we will show how the context of resistance genes can allow inference of their potential to spread to human pathogens from environmental or commensal bacteria. All these aspects will be exemplified by data from our studies of environments subjected to pharmaceutical pollution in India, the effect of travel on the human resistome, and modern municipal wastewater treatment processes.
The talk will take place on Monday, May 18, 2015 at 13:20. The full scientific program for the conference can be found here. Registration for the conference is still possible, although not for the early-bird price. I look forward to see a lot of the people who will attend the conference, and hopefully also you!
Metaxa2 update
Metaxa2 has been updated to version 2.0.2 and can be downloaded from the Metaxa2 web site. The 2.0.2 update fixes two minor bugs; one causing the “.graph” file to display incorrect or no names for the regions of the LSU regions, and one causing misreporting of the number of sequences in single-end FASTQ files (paired-end files were reported correctly). The update also brings a slightly improved classifier. Thanks to Marco Severgnini for reporting the FASTQ file issue! The update is available here.
A third-party parallel ITSx implementation
Some of you who think ITSx is running slowly despite being assigned multiple CPUs, particularly on datasets with only one kind of sequences (e.g. fungal) using the -t F
option might be interested in trying out Andrew Krohn’s parallel ITSx implementation. The solution essentially employs a bash script spawning multiple ITSx instances running on different portions of the input file. Although there are some limitations to the script (e.g. you cannot select a custom name for the output and you will only get the ITS1 and ITS2 + full sequences FASTA files, as far as I understand the script), it may prove useful for many of you until we write up a proper solution to the poor multi-thread performance of ITSx (planned for version 1.1). In the coming months, I recommend that you check this solution out! See also the wiki documentation.
My speed tests shows the following (on a quite small test set of fungal ITS sequences):
ITSx parallel on 16 CPUs, all ITS types (option “-t all
“):
3 min, 16 sec
ITSx parallel on 16 CPUs, only fungal ITS types (option “-t f
“):
54 sec
ITSx native on 16 CPUs, all ITS types (options “-t all --cpu 16
“):
4 min, 59 sec
ITSx native on 16 CPUs, only fungal types (options “-t f --cpu 16
“):
5 min, 50 sec
Why fungal only took longer time in the native implementation is a mystery to me, but probably shows why there is a need to rewrite the multithreading code, as we did with Metaxa a couple of years ago. Stay tuned for ITSx updates!
Published paper: Metaxa2
After almost a year in different stages of review and revision, in which the paper (but not the software) saw a total transformation, I am happy to announce that the paper describing Metaxa2 has been accepted in Molecular Ecology Resources and is available in a rudimentary online early form. The figures in this version are not that pretty, but those who wants to read the paper asap, you have the possibility to do so.
This means that if you have been using Metaxa2 for a publication, there is now a new preferred way of citing this, namely:
Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399
The paper (1), apart from describing the new Metaxa version, also brings a very thorough evaluation of the software, compared to other tools for taxonomic classification implemented in QIIME (2). In short, we show that:
- Metaxa2 can make trustworthy taxonomic classifications even with reads as short as 100 bp
- Generally, the performance is reliable across the entire SSU rRNA gene, regardless of which V-region a read is derived from
- Metaxa2 can reliably recapture species composition from short-read metagenomic data, comparable with results of amplicon sequencing
- Metaxa2 outperforms other popular tools such as Mothur (3), the RDP Classifier (4), Rtax (5) and the QIIME implementation of Uclust (6) in terms of proportion of correctly classified reads from metagenomic data
- The false positive rate of Metaxa2 is very close to zero; far superior to many of the above mentioned tools, many of which assume that reads must derive from the rRNA gene
Metaxa2 can be downloaded here. We have already used it for around two years internally, and it forms the base of the taxonomic classifications in e.g. our recently published paper on antibiotic resistance in a polluted Indian lake (7).
References
- Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399 [Paper link]
- Caporaso JG, Kuczynski J, Stombaugh J et al.: QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336 (2010).
- Schloss PD, Westcott SL, Ryabin T et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541 (2009).
- Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267 (2007).
- Soergel DAW, Dey N, Knight R, Brenner SE: Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. The ISME Journal, 6, 1440–1444 (2012).
- Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461 (2010).
- Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014).
Metaxa2 update
An update to Metaxa2 that has long remained in internal testing has been deemed bug-free (as far as we can tell) and has been uploaded to the Metaxa2 web site. The update brings a slightly improved classifier, and is the first release that we declare full stable, although we have found no problems with the previously available version (release candidate 3). This also means that we take a jump directly from version 2.0, release candidate 3 to version 2.0.1 without passing a final 2.0 release. The update is available here.