Talk at Swedish Bioinformatics Workshop
I have had the pleasure to be chosen as a speaker for next week’s (ten days from now) Swedish Bioinformatics Workshop. My talk is entitled “Turn up the signal – wipe out the noise: Gaining insights into bacterial community functions using metagenomic data“, and will largely deal with the same questions as my talk on EDAR3 in May this year. As then, the talk will highlight the some particular pitfalls related to interpretation of data, and exemplify how flawed analysis practices can result in misleading conclusions regarding community function, and use examples from our studies of environments subjected to pharmaceutical pollution in India, the effect of travel on the human resistome, and modern municipal wastewater treatment processes.
The talk will take place on Thursday, September 24, 2015 at 16:30. The full program for the conference can be found here. And also, if you want a sneak peak of the talk, you can drop by on Friday 13.00 at Chemistry and Molecular Biology, where I will give a seminar on the same topic in the Monthly Bioinformatic Practical Meetings series.
Published paper: Prioritizing antibiotic resistance risks
Late last year, an opinion paper by José Martínez, Teresa Coque and Fernando Baquero was published in Nature Reviews Microbiology (1). In this paper, the authors present a system – resistance readiness conditions (RESCon) – for ranking the risks associated with the detection of antibiotic resistance genes. They also outline the obstacles associated with determining risks presented by antibiotic resistance genes in environmental microbial communities in terms of their potential to transfer to human pathogens. Generally, I am very positive about this paper, which I think is a must-read for anyone who works with antibiotic resistance genes in metagenomes, regardless of it they stem from the human gut or the external environment.
There is, however, one very important aspect that struck me and many other members of our research group as curious: the proposed system assign antibiotic resistance genes already present on mobile genetic elements in human pathogens to the highest risk category (RESCon 1), while resistance genes encoding novel resistance mechanisms not yet been found on mobile elements in a pathogen are considered to be part of lower risk categories. We believe that this system will overestimate the risks associated with well-known resistance factors that are already circulating among human pathogens and under-appreciate the potentially disastrous consequences that the transfer of previously unknown resistance determinants from the environmental resistome could have (exemplified by the rapid clinical spread of the NDM-1 metallo-beta-lactamase gene (2,3)).
With this in mind me and Joakim Larsson wrote a response letter to Nature Reviews Microbiology that went online last monday (4), together with the authors’ reply to us (5). (I strongly suggest that you read the entire original paper (1) before you read the reply (5) to our response letter (4), since Martinez et al. changes the scope slightly from the original paper in their response letter, and these clarifications may (or may not) have been in response to our arguments.)
In our response, we also stress that the abundances of resistance genes, and not only their presence, should be accounted for when estimating risks (although that last point might have been slightly obscured due to the very low word limit). In other words, we think that identifying environmental hotspots for antibiotic resistance genes, where novel resistance genes could be selected for (6,7,8), is of great importance for mitigating public health risks related to environmental antibiotic resistance. Please read our full thoughts on the matter in Nature Reviews Microbiology.
Similar issues will be touched upon in my talk at the EDAR2015 conference later in May. Hope to see you there!
References
- Martinez JL, Coque TM, Baquero F: What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 2015, 13:116–123.
- Kumarasamy KK, et al.: Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010, 10:597–602.
- Walsh TR, Weeks J, Livermore DM, Toleman MA: Dissemination of NDM‐1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 2011, 11:355–362.
- Bengtsson-Palme J, Larsson DGJ: Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 2015, Advance online publication. doi:10.1038/nrmicro3399‐c1
- Martinez JL, Coque TM, Baquero F: Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol 2015, Advance online publication. doi:10.1038/nrmicro3399‐c2
- Kristiansson E, et al.: Pyrosequencing of antibiotic‐contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 2011, 6:e17038.
- Bengtsson‐Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 2014, 5:648.
- Marathe NP, et al.: A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi‐drug resistant integron‐bearing bacteria. PLoS ONE 2013, 8:e77310.
Talk on the EDAR2015 conference
I will be giving a talk at the Third International symposium on the environmental dimension of antibiotic resistance (EDAR2015) next month (five weeks from now. The talk is entitled “Turn up the signal – wipe out the noise: Gaining insights into antibiotic resistance of bacterial communities using metagenomic data“, and will deal with handling of metagenomic data in antibiotic resistance gene research. The talk will highlight the some particular pitfalls related to interpretation of data, and exemplify how flawed analysis practices can result in misleading conclusions regarding antibiotic resistance risks. I will particularly address how taxonomic composition influences the frequencies of resistance genes, the importance of knowledge of the functions of the genes in the databases used, and how normalization strategies influence the results. Furthermore, we will show how the context of resistance genes can allow inference of their potential to spread to human pathogens from environmental or commensal bacteria. All these aspects will be exemplified by data from our studies of environments subjected to pharmaceutical pollution in India, the effect of travel on the human resistome, and modern municipal wastewater treatment processes.
The talk will take place on Monday, May 18, 2015 at 13:20. The full scientific program for the conference can be found here. Registration for the conference is still possible, although not for the early-bird price. I look forward to see a lot of the people who will attend the conference, and hopefully also you!
Published paper: Aquatic effect-based monitoring tools
A couple of days ago a paper was published in Environmental Sciences Europe summarizing the EU report on effect-based tools for use in toxicology in the aquatic environment I have been involved in (1). This report was officially published last spring (2), and can be found here, with the annex available on the European Commission document website. My contribution to the paper was, as with the report, in the genomics and metagenomics section. The paper briefly presents modern bioassays, biomarkers and ecological methods that can be used for aquatic monitoring of the environment.
References:
- Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Dulio V, Broeg K, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, O’Toole S, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Hollert H, Di Paolo C, Brack W. Kammann U, Kase R: The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe, 27, 7 (2015). doi: 10.1186/s12302-015-0039-4 [Paper link]
- Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Broeg K, Kammann U, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kase R, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Dulio V, Hollert H, Di Paolo C, Brack W (2014). Technical Report on Aquatic Effect-Based Monitoring Tools. European Commission. Technical Report 2014-077, Office for Official Publications of European Communities, ISBN: 978-92-79-35787-9. doi:10.2779/7260
Polluted lake paper in final form
Our paper describing the bacterial community of a polluted lake in India has now been typeset and appears in its final form in Frontiers in Microbiology. If I may say so, I think that the paper turned out to be very goodlooking and it is indeed nice to finally see it in print. The paper describes an unprecedented diversity and abundance of antibiotic resistance genes and genes enabling transfer of DNA between bacteria. We also describe a range of potential novel plasmids from the lake. Finally, the paper briefly describes a new approach to targeted assembly of metagenomic data — TriMetAss — which can be downloaded here.
Reference:
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648
Published paper: Antibiotic resistance genes in a polluted lake
The first work in which I have employed metagenomics to investigate antibiotic resistance has been accepted in Frontiers in Microbiology, and is (at the time of writing) available as a provisional PDF. In the paper (1), which is co-authored by Fredrik Boulund, Jerker Fick, Erik Kristiansson and Joakim Larsson, we have used shotgun metagenomic sequencing of an Indian lake polluted by dumping of waste from pharmaceutical production. We used this data to describe the diversity of antibiotic resistance genes and the genetic context of those, to try to predict their genetic transferability. We found resistance genes against essentially every major class of antibiotics, as well as large abundances of genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant in the polluted lake than in a Swedish lake included for comparison, where only eight resistance genes were found. The abundances of resistance genes have previously only been matched by river sediment subject to pollution from pharmaceutical production (2). In addition, we describe twenty-six known and twenty-one putative novel plasmids from the Indian lake metagenome, indicating that there is a large potential for horizontal gene transfer through conjugation. Based on the wide range and high abundance of known resistance factors detected, we believe that it is plausible that novel resistance genes are also present in the lake. We conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes. This work further highlights previous findings that pharmaceutical production settings could provide sufficient selection pressure from antibiotics (3) to drive the development of multi-resistant bacteria (4,5), resistance which may ultimately end up in pathogenic species (6,7). The paper can be read in its entirety here.
References:
- Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, Volume 5, Issue 648 (2014). doi: 10.3389/fmicb.2014.00648
- Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ: Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, Volume 6, e17038 (2011). doi:10.1371/journal.pone.0017038.
- Larsson DGJ, de Pedro C, Paxeus N: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater, Volume 148, 751–755 (2007). doi:10.1016/j.jhazmat.2007.07.008
- Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ERB, Larsson DGJ, Shouche YS: A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria. PLoS ONE, Volume 8, e77310 (2013). doi:10.1371/journal.pone.0077310
- Johnning A, Moore ERB, Svensson-Stadler L, Shouche YS, Larsson DGJ, Kristiansson E: Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl Environ Microbiol, Volume 79, 7256–7263 (2013). doi:10.1128/AEM.02141-13
- Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR., et al.: Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect, Volume 121, 878–885 (2013). doi:10.1289/ehp.1206446
- Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, Volume 57, 704–710 (2013). doi:10.1093/cid/cit355
EU report on effect-based tools for ecotoxicology
Because of my previous involvement in a Swedish report on toxicological monitoring using (meta)-genomics tools [1], I also became in a related EU report on effect-based tools for use in toxicology in the aquatic environment. This report has recently been officially published [2], and can be found here, with the annex available on the European Commission document website. My contribution to this report has been in the genomics and metagenomics section (Chapter 7: OMICS techniques), in which I wrote the metagenomics part and contributed to the rest. I personally think this is a quite forward-thinking report, which is nice for a large institution such as the EU.
- Länsstyrelsen i Västra Götalands län. (2012). Swedish monitoring of hazardous substances in the aquatic environment (No. 2012:23). (A.-S. Wernersson, Ed.) Current vs required monitoring and potential developments (pp. 1–291). Länsstyrelsen i Västra Götalands län, vattenvårdsenheten.
- Wernersson A-S, Carere M, Maggi C, Tusil P, Soldan P, James A, Sanchez W, Broeg K, Kammann U, Reifferscheid G, Buchinger S, Maas H, Van Der Grinten E, Ausili A, Manfra L, Marziali L, Polesello S, Lacchetti I, Mancini L, Lilja K, Linderoth M, Lundeberg T, Fjällborg B, Porsbring T, Larsson DGJ, Bengtsson-Palme J, Förlin L, Kase R, Kienle C, Kunz P, Vermeirssen E, Werner I, Robinson CD, Lyons B, Katsiadaki I, Whalley C, den Haan K, Messiaen M, Clayton H, Lettieri T, Negrão Carvalho R, Gawlik BM, Dulio V, Hollert H, Di Paolo C, Brack W (2014). Technical Report on Aquatic Effect-Based Monitoring Tools. European Commission. Technical Report 2014-077, Office for Official Publications of European Communities, ISBN: 978-92-79-35787-9. doi:10.2779/7260
Talk tomorrow at Swedish Bioinformatics Workshop
Those of you attending the Swedish Bioinformatics Workshop, this year given in Skövde, will have a chance seeing me talk about how sequencing depth influences the picture we get of the environmental resistance gene diversity. I think the topic is very urgent and interesting, and will likely come back to it in a more thorough blog post later. There are also a few other very interesting talks, for example about metagenomic gene quantification, and en masse sequencing of E. coli and H. pylori isolates. I think all attendants are in for a treat! See you there!
Swedish monitoring of hazardous substances
I was recently involved as an adviser in a report by the County Administrative Board in Västra Götaland (Länsstyrelsen) which has now been published [1]. [UPDATE: The PDF link at Länsstyrelsen’s page does not seem to work, but leads to another report in Swedish. I have reported this error to the web admin, we’ll see what happens. Once again, the PDF seems to work.] The report aims to identify gaps in the current monitoring system of hazardous substances in the Swedish environment. The report deals with effect based monitoring tools and their usefulness for predicting and/or observing effects of hazardous substances in the environment. The overall conclusion of the report is that there are several gaps in both knowledge and techniques, and a need for developing new resources. However, Sweden still has a good potential to adapt the monitoring system to fill the needs. I have been involved in one of the last chapters, describing the use of metagenomics if study ecosystem function (chapter 30.3). For people with an interest in environmental monitoring, the report is an interesting read in its entirety. For those more interested in applications for metagenomics I recommend turning to page 285 and continue to the end of the report (it’s only five pages on metagenomics, so you’ll manage).
- Länsstyrelsen i Västra Götalands län. (2012). Swedish monitoring of hazardous substances in the aquatic environment (No. 2012:23). (A.-S. Wernersson, Ed.) Current vs required monitoring and potential developments (pp. 1–291). Länsstyrelsen i Västra Götalands län, vattenvårdsenheten.
Blurring the line between cause and effect
Finally I have gotten around to finish my reply to Amy Pruden, who gave me some highly relevant and well-balanced critique of my previous post on antibiotic resistance genes as pollutants, back in early March. Too much came in between, but now I am more or less content with my answer.
First of all I would like to thank Amy for her response to my post on antibiotic resistance genes as pollutants. Her reply is very well thought-through, and her criticism of some of my claims is highly appropriate. For example, I have to agree on that the extracellular DNA pool is vastly uncharacterized, and that my statement on this likely not being a source of resistance transmission is a bit of a stretch. The role of “free-floating” DNA in gene transfer must be further elucidated, and currently we do not really know whether it is important or not; and if so, to what extent it contributes.
However, I still maintain my view that there are problems with considering resistance genes pollutants, mainly because the blurs the line between cause and effect. If we for example consider photosynthetic microbial communities exposed to the photosynthesis inhibitor Irgarol, the communities develop (or acquires) tolerance towards the compound over time (Blanck et al 2009). The tolerance mechanism has been attributed to changes in the psbA gene sequence (Eriksson et al. 2009). If we address this issue from a “resistance-genes-as-pollutants” perspective, would these tolerance-conveying psbA genes be considered pollutants? It would make sense to do so as they are unwanted in weed control circumstances; much like antibiotic resistance genes are unwanted in clinical contexts. It could be argued here that in these microbes such tolerance-associated psbA genes do not cause any harm. But consider for a moment that they did not occur microbes, but in weeds, would they then be considered pollutants? In weeds they would certainly cause (at least economic) harm. Furthermore, say that the tolerance-conveying psbA genes have the ability to spread (which is possible at least in marine settings assisted by phages (Lindell et al 2005)), would that make these tolerance genes pollutants? It is quite of a stretch but as plants can take up genetic material from bacteria (c.f. Clough & Bent 1998, although this is not my area of expertise), there could be a spreading potential to weeds of these tolerance-conveying psbA genes.
What I am trying to say is that if we start viewing antibiotic resistance genes as pollutants per se, instead of looking at the chemicals (likely) causing resistance development, we start blurring the line between cause and effect. Resistance genes in the environment provide resilience to communities (at least to some species – the issue of ecosystem function responses to toxicants is a highly interesting area one as well). However, in this case the resilience itself is the problem, because we think it can spread into human and animal pathogens. But from my point of view, the causes are still use, overuse, misuse and inappropriate release of antibiotics. Therefore, I maintain that we should be careful with pointing out resistance genes by themselves as pollutants – if we do not have very good reasons to do so.
Nevertheless, that does not mean that I think Pruden, and many other prominent authors, are wrong when they refer to resistance genes as pollutants. All I want to point out is that the statement in itself is a bit dangerous, as it might draw attention towards mitigating the effect of pollution, instead of mitigating the source of pollution itself. The persistence of resistance genes in bacterial genomes is alarming (Andersson & Hughes 2011), as it means that removal of selection pressures may have less effect on resistance gene abundance than anticipated. However, the only way I see out of this darkening scenario is to:
- Minimize the selection pressure for resistance genes in the clinical setting
- Immediately reduce environmental release of antibiotics, both from manufacturing and use. This primarily has to be done using better treatment technologies
- Find the routes that enable environmental bacteria to disseminate resistance genes to clinically relevant species and strains – and close them
- Develop antibiotics exploiting new mechanisms to eliminate bacteria
Lastly, I would like to thank Amy for taking my critique seriously – I think we agree on a lot more than we differ on, and I look forward to have this discussion in person at some point. I think we both agree that regardless of our standpoint, the terminology used in this context deserves to be discussed. Nevertheless, the terminology is quite unimportant compared to the values that are at stake – our fundamental ability to treat diseases and perform modern health care.
References
- Andersson, D.I. & Hughes, D., 2011. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiology Reviews, 35(5), pp.901–911.
- Blanck, H., Eriksson, K. M., Grönvall, F., Dahl, B., Guijarro, K. M., Birgersson, G., & Kylin, H. (2009). A retrospective analysis of contamination and periphyton PICT patterns for the antifoulant irgarol 1051, around a small marina on the Swedish west coast. Marine pollution bulletin, 58(2), 230–237. doi:10.1016/j.marpolbul.2008.09.021
- Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant journal : for cell and molecular biology, 16(6), 735–743.
- Eriksson, K. M., Clarke, A. K., Franzen, L.-G., Kuylenstierna, M., Martinez, K., & Blanck, H. (2009). Community-level analysis of psbA gene sequences and irgarol tolerance in marine periphyton. Applied and Environmental Microbiology, 75(4), 897–906. doi:10.1128/AEM.01830-08
- Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M., & Chisholm, S. W. (2005). Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 438(7064), 86–89. doi:10.1038/nature04111