Tag: Metagenomics

Metaxa updated to version 1.1.2

Some users have asked me to fix a table output bug in Metaxa, and I have finally got around to do so. The fix is released today in the 1.1.2 Metaxa package (download here). This version also brings an updated manual (finally), as the User’s Guide has lagged behind since version 1.0. Please continue to report bugs to metaxa [at sign] microbiology [dot] se

Download the Metaxa package

Read the manual

Megraft paper in print

I just learned from Research in Microbiology that the paper on our software Megraft has now been assigned a volume and an issue. The proper way of referencing Megraft should consequently now be:

Bengtsson J, Hartmann M, Unterseher M, Vaishampayan P, Abarenkov K, Durso L, Bik EM, Garey JR, Eriksson KM, Nilsson RH: Megraft: A software package to graft ribosomal small subunit (16S/18S) fragments onto full-length sequences for accurate species richness and sequencing depth analysis in pyrosequencing-length metagenomes. Research in Microbiology. Volume 163, Issues 6–7 (2012), 407–412, doi: 10.1016/j.resmic.2012.07.001[Paper link]

Megraft is currently at version 1.0.1, but I have a slightly updated version in the pipeline which will be made available later this fall.

ISME14 begins today

I am on my way to Copenhagen for the ISME14 conference that begins today. I’m myself quite excited about this event, and will present three posters (two as first author), and give a short talk on antibiotic resistance gene identification and metagenomics. My talk will be in the Bioinformatics in Microbial Ecology session on Thursday afternoon (at 13.30).

If you’d like to talk about Metaxa and Megraft, I will present an SSU-oriented poster in the Monday afternoon poster section (board number 267A). My antibiotic resistance gene poster will be presented on Thursday afternoon (board number 002A), and I really encourage everyone interested in metagenomics (especially metagenomic assembly) to come talk to me then! Finally, I am also partially responsible for a poster on periphyton metagenomics with Martin Eriksson as its main author. This poster is also presented on Monday, in the Microbial Dispersion and Biogeography session (board number 021A).

I hope to be able to make another post later tonight on what are the “essential” sessions for me on this conference. Hope to see you there soon!

New paper accepted: Megraft

Yesterday, our paper on Megraft – a software tool to graft ribosomal small subunit (16S/18S) fragments onto full-length SSU sequences – became available as an accepted online early article in Research in Microbiology. Megraft is built upon the notion that when examining the depth of a community sequencing effort, researchers often use rarefaction analysis of the ribosomal small subunit (SSU/16S/18S) gene in a metagenome. However, the SSU sequences in metagenomic libraries generally are present as fragmentary, non-overlapping entries, which poses a great problem for this analysis. Megraft aims to remedy this problem by grafting the input SSU fragments from the metagenome (obtained by e.g. Metaxa) onto full-length SSU sequences. The software also uses a variability model which accounts for observed and unobserved variability. This way, Megraft enables accurate assessment of species richness and sequencing depth in metagenomic datasets.

The algorithm, efficiency and accuracy of Megraft is thoroughly described in the paper. It should be noted that this is not a panacea for species richness estimates in metagenomics, but it is a huge step forward over existing approaches. Megraft shares some similarities with EMIRGE (Miller et al., 2011), which is a software package for reconstruction of full-length ribosomal genes from paired-end Illumina sequences. Megraft, however, is set apart in that it has a strong focus on rarefaction, and functions also when the number of sequences is small, which is often the case in 454 and Sanger-based metagenomics studies. Thus, EMIRGE and Megraft seek to solve a roughly similar problem, but for different sequencing technologies and sequencing scales.

Megraft is available for download here, and the paper can be read here.

  1. Bengtsson, J., Hartmann, M., Unterseher, M., Vaishampayan, P., Abarenkov, K., Durso, L., Bik, E.M., Garey, J.R., Eriksson, K.M., Nilsson R.H. (2012). Megraft: A software package to graft
  2. Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W., & Banfield, J. F. (2011). EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biology, 12(5), R44. doi:10.1186/gb-2011-12-5-r44

Metaxa and Illumina data

For the last months I have been (part time) struggling with getting Metaxa to eat Illumina paired-end data. This is a pretty tricky task, mainly due to the fact that Illumina reads are so much shorter than those obtained by Sanger and 454 sequencing. Therefore, I am more than happy to inform the community that today (the day before I go on vacation) I have a working prototype up and running. In fact, calling it a prototype is unfair, it is a quite far gone piece of software by now. Currently, I am running it on test data sets, and I will try to keep it running over the next couple of weeks. Thereafter, I hope to be able to release it sometime this autumn (but don’t expect a September release!), harnessing the power of Illumina sequencing for SSU identification. Stayed tuned, and have a great summer!

Presentation at SocBiN 2012

For those of you who like to listen to (or look at) me, I will be giving a presentation at this year’s SocBiN conference in Stockholm. My presentation has the long and quite informative title: Comprehensive Analysis of Antibiotic Resistance Genes in River Sediment, Well Water and Soil Microbial Communities Using Metagenomic DNA Sequencing. The talk is scheduled in the Using Next generation sequence data session, right after Jeroen Raes and Christopher Quince… It’s a short talk, so I will probably need to keep it simple, but it will be the first time I present results generated in relation with my present position, which I personally feel is very nice. We’re moving forward!

Swedish monitoring of hazardous substances

I was recently involved as an adviser in a report by the County Administrative Board in Västra Götaland (Länsstyrelsen) which has now been published [1]. [UPDATE: The PDF link at Länsstyrelsen’s page does not seem to work, but leads to another report in Swedish. I have reported this error to the web admin, we’ll see what happens. Once again, the PDF seems to work.] The report aims to identify gaps in the current monitoring system of hazardous substances in the Swedish environment. The report deals with effect based monitoring tools and their usefulness for predicting and/or observing effects of hazardous substances in the environment. The overall conclusion of the report is that there are several gaps in both knowledge and techniques, and a need for developing new resources. However, Sweden still has a good potential to adapt the monitoring system to fill the needs. I have been involved in one of the last chapters, describing the use of metagenomics if study ecosystem function (chapter 30.3). For people with an interest in environmental monitoring, the report is an interesting read in its entirety. For those more interested in applications for metagenomics I recommend turning to page 285 and continue to the end of the report (it’s only five pages on metagenomics, so you’ll manage).

  1. Länsstyrelsen i Västra Götalands län. (2012). Swedish monitoring of hazardous substances in the aquatic environment (No. 2012:23). (A.-S. Wernersson, Ed.) Current vs required monitoring and potential developments (pp. 1–291). Länsstyrelsen i Västra Götalands län, vattenvårdsenheten.

Evolution vs. Succession – what are we really studying?

One thing that I find slightly annoying is when people do not get the basic concepts right – or when debatable concepts are used without discussion of their implications. This further annoys me when it is done by senior scientists, who should know better. Sometimes, I guess this happens out of ignorance, and sometimes to be able to stick your subject to a certain buzzword concept. Neither is good, even though the former reason is little more forgivable then the latter. One area where this problem becomes agonizingly evident is when molecular biologists or medical scientists moves into ecology, as has happened with the advent of metagenomics. When the study of the human gut microflora turned into a large-scale sequencing effort, people who had previously studied bacteria grown on plates started facing a world of community ecology. However, I get the impression that way too often these people do not ask ecologists for advice, or even read up on the ecological literature. Which, I suppose, is the reason why medical scientists can talk about how the human gut microflora can “evolve” into a stable community a couple years after birth, even though words such as “development” or “succession” would be much more accurate to describe this change.

The marker gene flaw

To set what I mean straight, let us compare the human gut to a forest. If an open field is left to itself, larger plants will slowly inhabit it, and gradually different species will replace each other, until we have a fully developed forest. Similarly, the human gut microflora is at birth rather unstable, but stabilizes relatively quickly and within a few years we have a microbial community with “adult-like” characteristics. To arrive at this conclusion, scientists generally use the 16S (small sub-unit) genetic marker to study the bacterial species diversity. This works in pretty much the same way as going out into the forest and count trees of different kinds.

Now, if I went out into the forest once and counted the tree species, waited for 50 years and then did the same thing again, I would presumably see that the forest species composition had changed. However, if I called this “evolution”, fellow scientists would laugh at me. Raspberry bushes do not evolve into birches, and birches do not evolve into firs. Instead, ecologists talk about “succession”; a progressive transformation of a community, going on until a stable community is formed. The concept of succession seems well-suited also to describe what is happening in the human gut, and should of course also be used in that setting. The most likely driver of the functional community changes is not that some bacterial species have evolved new functions, but rather that bacterial species performing these new functions have outcompeted the once previously present.

In fact, I would argue that it is impossible to study evolution through a genetic marker such as the 16S gene (except in the rare case when you study evolution of the 16S gene itself). Instead, the only thing we could assess using a marker gene is how the copy number of the different gene variants change over time (or space, or conditions). The copy number tells us about the species composition of the community at a given time, which can be used to measure successional changes. However, evolutionary changes would require heritable changes in the characteristics of biological populations, i.e. that their genetic material change in some way. Unless that change happens in the marker gene of choice, we cannot measure it, and the alterations of composition we measure will only reflect differences in species abundances. These differences might have arisen from genetic (i.e. evolutionary) changes, but we cannot assess that.

What are we studying with metagenomics?

This brings us to the next problem, which is not only a problem of semantics and me getting annoyed, but a problem with real implications. What are we really studying using metagenomics? When we apply an environmental sequencing approach to a microbial community, we get a snapshot of the genetic material at a given time and site; at specific conditions. Usually, we aim to characterize the community from a taxonomic or functional perspective, and we often have some other community which we want to compare to. However, if we only collect data from different communities at one time point, or if we only study a community before and after exposure, we have no way of telling if differences stem from selective pressures or from more a random succession progress. As most microbial habitats are not as well studied as the human gut, we know little about microbial community assembly and succession.

Also, in ecology a disturbance to a particular community is generally considered as a starting point for a new succession process. This process may, or may not, return the community to the same stable state. However, if the disturbance was of permanent nature, the new community will have to adapt to the new conditions, and the stable state will likely not have the same species distribution. Such an adaption could be caused by genetic changes (which would clearly be an evolutionary process), or by simple replacement of sensitive species with tolerant ones. The latter would be a selective process, but not necessarily an evolutionary one. If the selection does not alter the genetic material within the species, but only the species composition, I would argue that this is also a case of succession.

Complications with resistance

This complicates the work with metagenomic data. If we study antibiotic resistance genes, and say that bacteria in an environment have evolved antibiotic resistance, we base that assertion on that genes responsible for resistance have either evolved within the present bacteria, or have (more likely) been transferred into the genomes of the bacteria via horizontal gene transfer. However, if the resistance profile we see is simply caused by a replacement of sensitive species with resistant ones, we have not really discovered something new evolving, but are only witnessing spread of already resistant bacteria. In the gut, this would be a problem by itself, but say that we do the same study in the open environment. We already know that environmental bacteria have contained resistance genes for ages, so the real threat to human health here would be a spread from naturally resistant bacteria to human pathogens. However, as mentioned earlier, without extremely well thought-through methodology we cannot really see such transmissions of resistance genes. Here, the search for mobile elements, and large-scale takes on community composition vs. resistance profiles in contaminated and non-polluted areas can play a huge role in shedding light on the question of spreading. However, this will require larger and better planned experiments using metagenomics than what is generally performed at the moment. The questions of microbial community assembly, dispersal, succession and adaption are still largely unanswered, and our metagenomic and environmental sequencing approaches have just started to tinker around with the lid of the jar.

Finally – Metaxa 1.1

I am extremely happy to announce that Metaxa 1.1 (first announced back in July) has finally left the beta stage, and is now designated as a feature complete 1.1 update. We consider this update stable for production use. The 1.1 update utilize hmmsearch instead of hmmscan for higher extraction speeds and better accuracy. This clever trick was inspired by a blog post by HMMER’s creator Sean Eddy on hmmscan vs hmmsearch (http://selab.janelia.org/people/eddys/blog/?p=424). As the speedup comes from the extraction step, the speed increase will be largest for huge data sets with only a small proportion of actual SSU sequences (typically large 454 metagenomes).

What took so long, you might ask, as I promised an imminent release already in August. Well, during testing a difference in scoring was discovered. This difference did not have any implications for long sequences (> ~350 bp), but caused Metaxa to have problems on short reads (most evident on ~150 bp and shorter). Therefore, the scoring system had to be redesigned, which in turn required more extensive testing. Now, however, Metaxa 1.1 has a fine-tuned scoring system, which by default is based on scores instead of E-values, and in some instances have even better detection accuracy than the old Metaxa version. We encourage everyone to try out this new version of Metaxa (although the 1.0.2 version will remain available for download). It should be bug free, but we cannot ensure 100% compatibility in all usage scenarios. Therefore, we are happy if you report any bugs or inconsistencies to the e-mail address: metaxa (at] microbiology [dot) se.

The new version of Metaxa can be downloaded here: https://microbiology.se/software/metaxa/ Please note that the manual has not yet been updated yet, so use the help feature for the up-to-date options. Happy SSU detecting!

Metaxa FAQ

Finally, the Metaxa FAQ is ready! If you have any other questions, please mail them to metaxa [at] microbiology [dot] se, and I will include them in the FAQ at some later point. I would like to thank anyone who has contributed with questions, suggestions, comments and other types of feedback so far. It really helps improving this software. The FAQ is found here.

You may also wonder what has happened to the stable version of the 1.1 Metaxa speedup I promised in July. It is still on the way, but due to a minor computer failure and other CPU-heavy tasks being of higher priority the software still has not been fully tested. As we want to release a truly stable and functional update, we need to hold back on the package for some more time. Be patient, or try out the beta that is already available.