Tag: Papers

Published paper: The periphyton metagenome

I am very happy to announce that our paper on the metagenomes of periphyton communities (1) have been accepted in Frontiers in Microbiology (Aquatic Microbiology section). This project has been one of my longest running, as it started as my master thesis in 2010 and has gone through several metamorphoses before hitting its final form.

Briefly, our main findings are that:

  1. Periphyton communities harbor an extraordinary diversity of organisms, including viruses, bacteria, algae, fungi, protozoans and metazoans
  2. Bacteria are by far the most abundant
  3. We find functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances
  4. Genes encoding enzymes that participate in anaerobic pathways are found in the biofilms suggesting that anaerobic or low-oxygen micro-zones within the biofilms exist

Most of this work has been carried out by my colleague Kemal Sanli, who have been doing a wonderful job pulling this together, with the help of Henrik Nilsson and Martin Eriksson. It also deserves to be noted that this work was the starting point for the Metaxa software (2,3), which recently reached version 2.1.1.

References

  1. Sanli K, Bengtsson-Palme J, Nilsson RH, Kristiansson E, Alm Rosenblad M, Blanck H, Eriksson KM: Metagenomic sequencing of marine periphyton: Taxonomic and functional insights into biofilm communities. Frontiers in Microbiology, 6, 1192 (2015). doi: 10.3389/fmicb.2015.01192 [Paper link]
  2. Bengtsson J, Eriksson KM, Hartmann M, Wang Z, Shenoy BD, Grelet G, Abarenkov K, Petri A, Alm Rosenblad M, Nilsson RH: Metaxa: A software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets. Antonie van Leeuwenhoek, 100, 3, 471-475 (2011). doi:10.1007/s10482-011-9598-6. [Paper link]
  3. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Molecular Ecology Resources, 15, 6, 1403–1414 (2015). doi: 10.1111/1755-0998.12399 [Paper link]

A good-looking version of the Travel and Resistance paper

The paper we published in August on travelers carrying resistance genes with them in their gut microbiota has now been typeset and got proper volume and issue numbers assigned to it in Antimicrobial Agents and Chemotherapy. Take a look at it, I personally think it’s quite good-looking.

Also, if you understand Swedish, here is an interview with me broadcasted on Swedish Radio last month about this study and the consequences of it.

The new citation for the paper is:

  • Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E, Palmgren H, Larsson DGJ, Johansson A: The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrobial Agents and Chemotherapy, 59, 10, 6551-6560 (2015). doi: 10.1128/AAC.00933-15 [Paper link]

Travel and resistance paper in the news

There have been quite a lot of buzz this week around the travel paper we published earlier this month. Twitter aside, the findings of the paper has also been covered by a range of news outlets, both in Sweden and internationally. Today, I was on Swedish radio talking resistance problems for about ten minutes (listen here; in Swedish). Here’s a few takes on the story I gathered around the web:

Science Daily
Business Standard
Z News
Englemed Health News
Läkemedelsvärlden (in Swedish)
Sveriges Radio (in Swedish)
Göteborgs-Posten (in Swedish)

Published paper: Travel spreads resistance genes

Earlier today, my most recent paper (1) became available online, describing resistance gene patterns in the gut microbiota of Swedes before and after travel to the Indian peninsula and central Africa. In this work, we have used metagenomic sequencing of the intestinal microbiome of Swedish students returning from exchange programs to show that the abundance of antibiotic resistance genes in several classes are increased after travel. This work reiterates the findings of several papers describing uptake of resistant bacteria (2-8) or resistance genes (9-11) after travel to destinations with worse resistance situation.

Our paper is important because it:

  1. Addresses the abundance of a vast range of resistance genes (more than 300).
  2. Finds evidence for that the overall relative abundance of antibiotic resistance genes increased after travel, without any intake of antibiotics.
  3. Shows that the sensitivity of metagenomics was, despite very deep sequencing efforts, not sufficient to detect acquisition of the low-abundant (CTX-M) resistance genes responsible for observed ESBL phenotypes.
  4. Reveals a “core resistome” of resistance genes that are more or less omnipresent, and remain relatively stable regardless of travel, while changes seem to occur in the more variable part of the resistome.
  5. Hints at increased abundance of Proteobacteria after travel, although this increase could not specifically be linked to resistance gene increases.
  6. Uses de novo metagenomic assembly to physically link resistance genes in the same sample, giving hints of co-resistance patterns in the gut microbiome.

The paper was a collaboration with Martin Angelin, Helena Palmgren and Anders Johansson at Umeå University, and was made possible by bioinformatics support from SciLifeLab in Stockholm. I highly recommend reading it as a complement to e.g. the Forslund et al. paper (12) describing country-specific antibiotic resistance patterns in the gut microbiota.

Taken together, this study offers a broadened perspective on how the antibiotic resistance potential of the human gut microbiome changes after travel, providing an independent complement to previous studies targeting a limited number of bacterial species or antibiotic resistance genes. Understanding how resistance genes travels the globe is hugely important, since resistance in principle only need to appear in a pathogen once; improper hygiene and travel may then spread novel resistance genes across continents rapidly (13,14).

References

  1. Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E, Palmgren H, Larsson DGJ, Johansson A: The human gut microbiome as a transporter of antibiotic resistance genes between continents. Antimicrob Agents Chemother Accepted manuscript posted online (2015). doi: 10.1128/AAC.00933-15 [Paper link]
  2. Gaarslev K, Stenderup J: Changes during travel in the composition and antibiotic resistance pattern of the intestinal Enterobacteriaceae flora: results from a study of mecillinam prophylaxis against travellers’ diarrhoea. Curr Med Res Opin 9:384–387 (1985).
  3. Paltansing S, Vlot JA, Kraakman MEM, Mesman R, Bruijning ML, Bernards AT, Visser LG, Veldkamp KE: Extended-spectrum β-lactamase-producing enterobacteriaceae among travelers from the Netherlands. Emerging Infect. Dis. 19:1206–1213 (2013).
  4. Ruppé E, Armand-Lefèvre L, Estellat C, El-Mniai A, Boussadia Y, Consigny PH, Girard PM, Vittecoq D, Bouchaud O, Pialoux G, Esposito-Farèse M, Coignard B, Lucet JC, Andremont A, Matheron S: Acquisition of carbapenemase-producing Enterobacteriaceae by healthy travellers to India, France, February 2012 to March 2013. Euro Surveill. 19 (2014).
  5. Kennedy K, Collignon P: Colonisation with Escherichia coli resistant to “critically important” antibiotics: a high risk for international travellers. Eur J Clin Microbiol Infect Dis 29:1501–1506 (2010).
  6. Tham J, Odenholt I, Walder M, Brolund A, Ahl J, Melander E: Extended-spectrum beta-lactamase-producing Escherichia coli in patients with travellers’ diarrhoea. Scand. J. Infect. Dis. 42:275–280 (2010).
  7. Östholm-Balkhed Å, Tärnberg M, Nilsson M, Nilsson LE, Hanberger H, Hällgren A, Travel Study Group of Southeast Sweden: Travel-associated faecal colonization with ESBL-producing Enterobacteriaceae: incidence and risk factors. J Antimicrob Chemother 68:2144–2153 (2013).
  8. Kantele A, Lääveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, Antikainen J, Kirveskari J: Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing enterobacteriaceae. Clin Infect Dis 60:837–846 (2015).
  9. von Wintersdorff CJH, Penders J, Stobberingh EE, Oude Lashof AML, Hoebe CJPA, Savelkoul PHM, Wolffs PFG: High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerging Infect. Dis. 20:649–657 (2014).
  10. Tängdén T, Cars O, Melhus A, Löwdin E: Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 54:3564–3568 (2010).
  11. Dhanji H, Patel R, Wall R, Doumith M, Patel B, Hope R, Livermore DM, Woodford N: Variation in the genetic environments of bla(CTX-M-15) in Escherichia coli from the faeces of travellers returning to the United Kingdom. J Antimicrob Chemother 66:1005–1012 (2011).
  12. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, Bork P: Country-specific antibiotic use practices impact the human gut resistome. Genome Res 23:1163–1169 (2013).
  13. Bengtsson-Palme J, Larsson DGJ: Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol 13:396 (2015).
  14. Larsson DGJ: Antibiotics in the environment. Ups J Med Sci 119:108–112 (2014).

Indian lake picked up by Indian media

It is nice to see that Indian media has picked up the story about antibiotic resistance genes in the heavily polluted Kazipally lake. In this case, it is the Deccan Chronicle who have been reporting on our findings and briefly interviewed Prof. Joakim Larsson about the study. The issue of pharmaceutical pollution of the environment in drug-producing countries is still rather under-reported and public perception of the problem might be rather low. Therefore, it makes me happy to see an Indian newspaper reporting on the issue. The scientific publication referred to can be found here.

Published paper: ITS chimera dataset

A couple of days ago, a paper I have co-authored describing an ITS sequence dataset for chimera control in fungi went online as an advance online publication in Microbes and Environments. There are several software tools available for chimera detection (e.g. Henrik Nilsson‘s fungal chimera checker (1) and UCHIME (2)), but these generally rely on the presence of a chimera-free reference dataset. Until now, there was no such dataset is for the fungal ITS region, and we in this paper (3) introduce a comprehensive, automatically updated reference dataset for fungal ITS sequences based on the UNITE database (4). This dataset supports chimera detection throughout the fungal kingdom and for full-length ITS sequences as well as partial (ITS1 or ITS2 only) datasets. We estimated the dataset performance on a large set of artificial chimeras to be above 99.5%, and also used the dataset to remove nearly 1,000 chimeric fungal ITS sequences from the UNITE database. The dataset can be downloaded from the UNITE repository. Thereby, it is also possible for users to curate the dataset in the future through the UNITE interactive editing tools.

References:

  1. Nilsson RH, Abarenkov K, Veldre V, Nylinder S, Wit P de, Brosché S, Alfredsson JF, Ryberg M, Kristiansson E: An open source chimera checker for the fungal ITS region. Molecular Ecology Resources, 10, 1076–1081 (2010).
  2. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 16, 2194-2200 (2011). doi:10.1093/bioinformatics/btr381
  3. Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM, Bengtsson-Palme J, Walker D, de Sousa F, Gamper HA, Larsson E, Larsson K-H, Kõljalg U, Edgar R, Abarenkov K: A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environments, Advance Online Publication (2015). doi: 10.1264/jsme2.ME14121
  4. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TT, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Senés C, Smith ME, Suija A, Taylor DE, Telleria MT, Weiß M, Larsson KH: Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology, 22, 21, 5271–5277 (2013). doi: 10.1111/mec.12481

Published paper: Metaxa2

After almost a year in different stages of review and revision, in which the paper (but not the software) saw a total transformation, I am happy to announce that the paper describing Metaxa2 has been accepted in Molecular Ecology Resources and is available in a rudimentary online early form. The figures in this version are not that pretty, but those who wants to read the paper asap, you have the possibility to do so.

This means that if you have been using Metaxa2 for a publication, there is now a new preferred way of citing this, namely:

Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399

The paper (1), apart from describing the new Metaxa version, also brings a very thorough evaluation of the software, compared to other tools for taxonomic classification implemented in QIIME (2). In short, we show that:

  • Metaxa2 can make trustworthy taxonomic classifications even with reads as short as 100 bp
  • Generally, the performance is reliable across the entire SSU rRNA gene, regardless of which V-region a read is derived from
  • Metaxa2 can reliably recapture species composition from short-read metagenomic data, comparable with results of amplicon sequencing
  • Metaxa2 outperforms other popular tools such as Mothur (3), the RDP Classifier (4), Rtax (5) and the QIIME implementation of Uclust (6) in terms of proportion of correctly classified reads from metagenomic data
  • The false positive rate of Metaxa2 is very close to zero; far superior to many of the above mentioned tools, many of which assume that reads must derive from the rRNA gene

Metaxa2 can be downloaded here. We have already used it for around two years internally, and it forms the base of the taxonomic classifications in e.g. our recently published paper on antibiotic resistance in a polluted Indian lake (7).

References

  1. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, Larsson DGJ, Nilsson RH: Metaxa2: Improved Identification and Taxonomic Classification of Small and Large Subunit rRNA in Metagenomic Data. Molecular Ecology Resources (2015). doi: 10.1111/1755-0998.12399 [Paper link]
  2. Caporaso JG, Kuczynski J, Stombaugh J et al.: QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336 (2010).
  3. Schloss PD, Westcott SL, Ryabin T et al.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541 (2009).
  4. Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267 (2007).
  5. Soergel DAW, Dey N, Knight R, Brenner SE: Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. The ISME Journal, 6, 1440–1444 (2012).
  6. Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461 (2010).
  7. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014).

A novel antibiotic? Pretty cool, but…

In a recent paper in Nature, a completely new antibiotic – teixobactin – is described (1). The really cool thing about this antibiotic is that it was discovered in a screen of uncultured bacteria, grown using new technology that enable controlled growth of single colonies in situ. I really like this idea, and I think the prospect of a novel antibiotic using a previously unexploited mechanism is super-promising, particularly in the light of alarming resistance development in clinically important pathogens (2,3). What really annoys me about the paper is the claim (already in the abstract) that since “we did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin (…) the properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance.” To me, this sounds pretty much like a bogus statement; in essence telling me that we apparently have not learned anything from the 70 years of antibiotics usage and resistance development. After working with antibiotic resistance a couple of years, particularly from the environmental perspective, I have a very disturbing feeling that there is already resistance mechanisms against teixobactin waiting out in the wild (4,5). Pretending that lack of mutation-associated resistance development means that there could not be resistance development did not help vancomycin (6,7), and we now see VRE (Vancomycin Resistant Enterococcus) showing up as a major problem in clinics. The “avoid development of resistance” claim is downright irresponsible, and the cynic in me cannot help to think that NovoBiotic Pharmaceuticals (the affiliation of almost half of the authors) has a monetary finger in this jar. In the end, time will tell how “resistance-resilient” teixobactin is and how well we can handle the gift of a novel antibiotic.

  1. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K: A new antibiotic kills pathogens without detectable resistance. Nature (2015). doi:10.1038/nature14098
  2. Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li X-Z, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E: The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis, 57: 704–710 (2013).
  3. French GL: The continuing crisis in antibiotic resistance. Int J Antimicrob Agents, 36 Suppl 3:S3–7 (2010).
  4. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5: 648 (2014).
  5. Larsson DGJ: Antibiotics in the environment. Ups J Med Sci, 119: 108–112 (2014).
  6. Wright GD: Mechanisms of resistance to antibiotics. Curr Opin Chem Biol, 7:563–569 (2003).
  7. Werner G, Strommenger B, Witte W: Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol, 3: 547–562 (2008).

Polluted lake paper in final form

Our paper describing the bacterial community of a polluted lake in India has now been typeset and appears in its final form in Frontiers in Microbiology. If I may say so, I think that the paper turned out to be very goodlooking and it is indeed nice to finally see it in print. The paper describes an unprecedented diversity and abundance of antibiotic resistance genes and genes enabling transfer of DNA between bacteria. We also describe a range of potential novel plasmids from the lake. Finally, the paper briefly describes a new approach to targeted assembly of metagenomic data — TriMetAss — which can be downloaded here.

Reference:
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648

TriMetAss – A Trinity-based targeted metagenomics assembler

With the publication of my latest paper last week (1), I also would like to highlight some of the software underpinning the findings a bit. To get around the problem that extremely common resistance genes could be present in multiple contexts and variants, causing assembler such as Velvet (2) to perform sub-optimally, we have written a software tool that utilizes Vmatch (3) and Trinity (4) to iteratively construct contigs from reads associated with resistance genes. This could of course be used in many other situations as well, when you want to specifically assemble a certain portion of a metagenome, but suspect that that portion might be found in multiple contexts.

TriMetAss is a Perl program, employing Vmatch and Trinity to construct multi-context contigs. TriMetAss uses extracted reads associated with, e.g., resistance genes as seeds for a Vmatch search against the complete set of read pairs, extracting reads matching with at least 49 bp (by default) to any of the seed reads. These reads are then assembled using Trinity. The resulting contigs are then used as seeds for another search using Vmatch to the complete set of reads, as above. All matches (including the previously matching read pairs) are again then used for a Trinity assembly. This iterative process is repeated until a stop criteria is met, e.g. when the total number of assembled nucleotides starts to drop rather than increase. The software can be downloaded here.

References:

  1. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648
  2. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–829 (2008). doi:10.1101/gr.074492.107
  3. Kurtz S: The Vmatch large scale sequence analysis software (2010). http://vmatch.de/
  4. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644–652 (2011). doi:10.1038/nbt.1883