TriMetAss updated to version 1.2
TriMetAss has today been updated to version 1.2. The new version addresses a number of minor issues, some of which I thought was fixed with the previous version. The update can be found here.
The main problem with the previous version of TriMetAss was that the Trinity developers had changed many options in the Trinity software, which rendered more recent versions of Trinity incompatible with TriMetAss. TriMetAss was not the only external software using Trinity that was affected by these changes. As far as my testing goes, these incompatibilities should now be fixed, by improved Trinity version determination in TriMetAss. This is still not a guarantee for future changes though, so just to make sure, use one of the Trinity versions tested with TriMetAss (versions v2.1.1 or trinityrnaseq_r2013_08_14).
This time I would like to thank Artemis Louyakis at the Univesity of Florida and Tatsuya Unno at the Jeju National University (Korea) for their input on TriMetAss.
TriMetAss 1.1
TriMetAss has been updated to version 1.1. The new version addresses a number of minor issues and brings two new handy features. The update can be found here.
New features:
- Multiple input files can now be specified by adding several -1 and -2 options.
- TriMetAss now automatically stops if the candidate reads are the same for two iterations in a row.
Fixed issues:
- Support for recent versions of Trinity that no longer contain the Trinity.pl script.
- A minor bug causing TriMetAss to use more memory than necessary has been fixed.
- Fixed the
--stop_total
option so that TriMetAss actually uses this option (rather than--stop_length
) - Allowed complicated paths to be supplied for the output directory.
I would like to thank users Rickard Hammarén, Dr. Tatsuya Unno, Dr. Gisle Vestergaard and Dr. Joseph Nesme for providing me with the underlying information to provide these fixes. Thanks a lot!
Polluted lake paper in final form
Our paper describing the bacterial community of a polluted lake in India has now been typeset and appears in its final form in Frontiers in Microbiology. If I may say so, I think that the paper turned out to be very goodlooking and it is indeed nice to finally see it in print. The paper describes an unprecedented diversity and abundance of antibiotic resistance genes and genes enabling transfer of DNA between bacteria. We also describe a range of potential novel plasmids from the lake. Finally, the paper briefly describes a new approach to targeted assembly of metagenomic data — TriMetAss — which can be downloaded here.
Reference:
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648
TriMetAss – A Trinity-based targeted metagenomics assembler
With the publication of my latest paper last week (1), I also would like to highlight some of the software underpinning the findings a bit. To get around the problem that extremely common resistance genes could be present in multiple contexts and variants, causing assembler such as Velvet (2) to perform sub-optimally, we have written a software tool that utilizes Vmatch (3) and Trinity (4) to iteratively construct contigs from reads associated with resistance genes. This could of course be used in many other situations as well, when you want to specifically assemble a certain portion of a metagenome, but suspect that that portion might be found in multiple contexts.
TriMetAss is a Perl program, employing Vmatch and Trinity to construct multi-context contigs. TriMetAss uses extracted reads associated with, e.g., resistance genes as seeds for a Vmatch search against the complete set of read pairs, extracting reads matching with at least 49 bp (by default) to any of the seed reads. These reads are then assembled using Trinity. The resulting contigs are then used as seeds for another search using Vmatch to the complete set of reads, as above. All matches (including the previously matching read pairs) are again then used for a Trinity assembly. This iterative process is repeated until a stop criteria is met, e.g. when the total number of assembled nucleotides starts to drop rather than increase. The software can be downloaded here.
References:
- Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ: Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, 648 (2014). doi: 10.3389/fmicb.2014.00648
- Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–829 (2008). doi:10.1101/gr.074492.107
- Kurtz S: The Vmatch large scale sequence analysis software (2010). http://vmatch.de/
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644–652 (2011). doi:10.1038/nbt.1883